Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ(1)=>a2=1-b2-c2_<1 =>\a\_<1 =>-1_<a_<1
Tương tự;-1_<a,b,c_<1
Lấy(1)-(2) có
a2(1-a)+b2(1-b)+c2(1-c)=0 (3)
VÌ a2(1-a)>_0;b2(1-b)>_0;c2(1-c)>_0 Nên từ (3) suy ra;
a2(1-a)=b2(1-b)=c2(1-c)=0
=>a,b,c hoặc bằng 0 hoặc bằng 1
Từ (1)=>a,b,c có 1 số bằng 1 còn 2 số bằng 0
=>a+b2+c3=0(đpcm)
Từ(1)=>a2=1-b2-c2_<1 =>\a\_<1 =>-1_<a_<1
Tương tự;-1_<a,b,c_<1
Lấy(1)-(2) có
a2(1-a)+b2(1-b)+c2(1-c)=0 (3)
VÌ a2(1-a)>_0;b2(1-b)>_0;c2(1-c)>_0 Nên từ (3) suy ra;
a2(1-a)=b2(1-b)=c2(1-c)=0
=>a,b,c hoặc bằng 0 hoặc bằng 1
Từ (1)=>a,b,c có 1 số bằng 1 còn 2 số bằng 0
=>a+b2+c3=0(đpcm)
\(P=\frac{a+b}{abc}=\frac{1}{c}\left(\frac{a+b}{ab}\right)=\frac{1}{1-\left(a+b\right)}.\left(\frac{1}{a}+\frac{1}{b}\right)\ge\frac{1}{\left(1-2\sqrt{ab}\right)}.\frac{2}{\sqrt{ab}}\)
\(P\ge\frac{4}{\left(1-2\sqrt{ab}\right).2\sqrt{ab}}\ge\frac{4}{\frac{\left(1-2\sqrt{ab}+2\sqrt{ab}\right)^2}{4}}=16\)
\(\Rightarrow P_{min}=16\) khi \(\left\{{}\begin{matrix}a=b=\frac{1}{4}\\c=\frac{1}{2}\end{matrix}\right.\)
Bạn tham khảo các câu trả lời của mọi người tại đây:
Câu hỏi của zZz Cool Kid zZz - Toán lớp 8 - Học toán với OnlineMath
Và đây củng chính là Moldova TST 2005
1. Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)
Tương tự : \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\); \(\frac{1}{a^2}+\frac{1}{c^2}\ge\frac{2}{ac}\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\). Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=9\)
\(9\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)
Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c = 1
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=7\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=49\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}=49\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=49\)
Áp dụng BĐT Cosi dạng engel cho 3 số dương ta có:
\(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\)
Dấu "=" xảy ra khi \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Ta thấy \(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\)đều là số dương
Vì thế nên ta sẽ áp dụng bđt cô-si dạng engel:
\(\frac{x^2+y^2+z^2}{a+b+c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\)
Vậy đẳng thức chỉ xảy ra khi \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
1) Từ \(-2\le a,b,c\le3\) suy ra :
\(\left(a+2\right)\left(a-3\right)\le0\Leftrightarrow a^2-a-6\le0\Leftrightarrow a^2\le a+6\)
\(\left(b+2\right)\left(b-3\right)\le0\Leftrightarrow b^2-b-6\le0\Leftrightarrow b^2\le b+6\)
\(\left(c+2\right)\left(c-3\right)\le0\Leftrightarrow c^2-c-6\le0\Leftrightarrow c^2\le c+6\)
Cộng các bđt trên theo vế ta có đpcm
2) \(P=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\left(1+\frac{1}{z}\right)=\frac{\left(x+1\right)\left(y+1\right)\left(z+1\right)}{xyz}\)
Từ giả thiết : \(x+1=\left(1-y\right)+\left(1-z\right)\ge2\sqrt{\left(1-y\right)\left(1-z\right)}=2\sqrt{\left(x+z\right)\left(x+y\right)}\)
Tương tự : \(y+1\ge2\sqrt{\left(y+x\right)\left(y+z\right)}\) , \(z+1\ge2\sqrt{\left(z+y\right)\left(z+x\right)}\)
\(\Rightarrow\frac{\left(x+1\right)\left(y+1\right)\left(z+1\right)}{xyz}\ge\frac{8\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{8.2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{64xyz}{xyz}=64\)
Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x+y+z=1\\x+y=y+z=z+x\end{cases}\Leftrightarrow}x=y=z=\frac{1}{3}\)
Vậy Min P = 64 tại x = y = z = 1/3