K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2017

cái này mik biết nè

vì a,b,c là 3 cạnh tam giác 

=> \(a,b,c\in\left[0;\frac{1}{2}\right]\)

=> \(a+b^2\le\frac{1}{2}+\frac{1}{4}=\frac{3}{4}\Rightarrow\sqrt{a+b^2}\le\sqrt{\frac{3}{4}}< 1\)

=> \(\frac{b}{\sqrt{a+b^2}}>b\)

tương tự mấy cái kia rồi + vào thì cậu có cả biểu thức >a+b+c=1

còn ý 2 thì nht nhé 

ta cần chứng minh bất đẳng thức 

\(\frac{b}{\sqrt{a+b^2}}< \frac{2b}{a+b+c}\Leftrightarrow\sqrt{a+b^2}>\frac{1}{2}\)

ta có \(\left(b-\frac{1}{2}\right)^2\ge0\Rightarrow a+b^2>a+b-\frac{1}{4}>\frac{a+b+c}{2}-\frac{1}{4}=\frac{1}{4}\Rightarrow\sqrt{a+b^2}>\frac{1}{4}\) 

=> bất đẳng thức cần chứng minh luôn đúng> Tương tự mấy cái kia rồi cậu tự + vào thì nó sẽ ra điều phải chứng minh

28 tháng 6 2019

a. Phải là nhỏ hơn hẳn nhé, ko có dấu = đâu

CM:

a,b,c là 3 cạnh 1 tam giác\(\Rightarrow\left(a-b\right)^2< c^2\Rightarrow a^2+b^2< c^2+2ab\Rightarrow\sqrt{a^2+b^2}< \sqrt{c^2+2ab}\)

cm tương tự ta có: \(VT< \sqrt{c^2+2ab}+\sqrt{b^2+2ac}+\sqrt{a^2+2bc}\)

Theo BĐT Bunhia \(\Rightarrow VT< \sqrt{a^2+2bc}+\sqrt{b^2+2ac}+\sqrt{c^2+2ab}\)\(\le\sqrt{\left(1+1+1\right)\left(a^2+b^2+c^2+2ab+2bc+2ac\right)}=\sqrt{3\left(a+b+c\right)^2}=\sqrt{3}.\left(a+b+c\right)\)

29 tháng 6 2019

2, (cần cù bù thông minh) Quy đồng

\(\left|\frac{a-b}{a+b}+\frac{b-c}{b+c}+\frac{c-a}{c+a}\right|=...=\left|\frac{\left(b-c\right)\left(a-c\right)\left(a-b\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right|\)        (chỗ ba chấm là bước quy đồng tự làm)

                                                                       \(=\frac{\left|a-b\right|}{a+b}.\frac{\left|b-c\right|}{b+c}.\frac{\left|a-c\right|}{a+c}\)

                                                                         \(\le\frac{ \left|a-b\right|}{2\sqrt{ab}}.\frac{\left|b-c\right|}{2\sqrt{bc}}.\frac{\left|a-c\right|}{2\sqrt{ca}}\left(Cauchy\right)\)

                                                                            \(< \frac{c}{2\sqrt{ab}}.\frac{a}{2\sqrt{bc}}.\frac{b}{2\sqrt{ca}}\left(Bđt\Delta\right)\)

                                                                              \(=\frac{1}{8}\left(đpcm\right)\)

25 tháng 2 2018

Tuogw tựCâu hỏi của Nue nguyen - Toán lớp 10 | Học trực tuyến

5 tháng 5 2019

lâu ko gặp hiếu

5 tháng 5 2019

Ta có \(\frac{1}{\sqrt{1+a^2}}=\frac{\sqrt{bc}}{\sqrt{bc+a.abc}}=\frac{\sqrt{bc}}{\sqrt{bc+a\left(a+b+c\right)}}=\frac{\sqrt{bc}}{\sqrt{\left(a+b\right)\left(a+c\right)}}=\sqrt{\frac{b}{a+b}}.\sqrt{\frac{c}{a+c}}\)

                                                                                                       \(\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\)

Tương tự => \(A\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{a+b}+\frac{c}{a+c}+\frac{a}{a+c}+\frac{b}{b+c}+\frac{c}{b+c}\right)=\frac{3}{2}\)

Dấu ''='' xảy ra khi a=b=c=\(\sqrt{3}\)

                                                                                                     

2 tháng 7 2016

Bài 1:

Đặt \(a^2=x;b^2=y;c^2=z\)

Ta có:\(\sqrt{\frac{x}{x+y}}+\sqrt{\frac{y}{y+z}}+\sqrt{\frac{z}{z+x}}\le\frac{3}{\sqrt{2}}\)

Áp dụng BĐT cô si ta có:

\(\sqrt{\frac{x}{x+y}}=\frac{1}{\sqrt{2}}\sqrt{\frac{4x\left(x+y+z\right)}{3\left(x+y\right)\left(x+z\right)}\frac{3\left(x+z\right)}{2\left(x+y+z\right)}}\)

\(\le\frac{1}{2\sqrt{2}}\left[\frac{4x\left(x+y+z\right)}{3\left(x+y\right)\left(x+z\right)}+\frac{3\left(x+z\right)}{2\left(x+y+z\right)}\right]\)

Tương tự với \(\sqrt{\frac{y}{y+z}}\)và \(\sqrt{\frac{z}{z+x}}\)

Cộng lại ta được:

\(\frac{\sqrt{2}}{3}\left[\frac{x\left(x+y+z\right)}{\left(x+y\right)\left(x+z\right)}+\frac{y\left(x+y+z\right)}{\left(y+z\right)\left(y+x\right)}+\frac{z\left(x+y+z\right)}{\left(z+x\right)\left(z+y\right)}\right]+\frac{3}{2\sqrt{2}}\le\frac{3}{2\sqrt{2}}\)

Sau đó bình phương hai vế rồi

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8xyz\)đẳng thức đúng

Vậy...

Bài 2:

Trước hết ta chứng minh bất đẳng thức sau:

\(\frac{a}{4a+4b+c}+\frac{b}{4b+4c+a}+\frac{c}{4c+4a+b}\le\frac{1}{3}\)

Nhân cả hai vế bđt với 4(a+b+c)4(a+b+c) rồi thu gọn ta được bđt sau: 

\(\frac{4a\left(a+b+c\right)}{4a+4b+c}+\frac{4b\left(a+b+c\right)}{4b+4c+a}+\frac{4c\left(a+b+c\right)}{4c+4a+b}\)\(\le\frac{4}{3}\left(a+b+c\right)\)

\(\left[\frac{4a\left(a+b+c\right)}{4a+4b+}-a\right]+\left[\frac{4b\left(a+b+c\right)}{4b+4c+a}-b\right]+\left[\frac{4c\left(a+b+c\right)}{4c+4a+b}-c\right]\le\frac{a+b+c}{3}\)

\(\frac{ca}{4a+4b+c}+\frac{ab}{4b+4c+a}+\frac{bc}{4c+4a+b}\le\frac{a+b+c}{9}\)

Áp dụng bđt cauchy-Schwarz ta có \(\frac{ca}{4a+4b+c}=\frac{ca}{\left(2b+c\right)+2\left(2a+b\right)}\)\(\le\frac{ca}{9}\left(\frac{1}{2b+c}+\frac{2}{2a+b}\right)\)

Từ đó ta có:

\(\text{∑}\frac{ca}{4a+4b+c}\le\frac{1}{9}\text{∑}\left(\frac{ca}{2b+c}+\frac{2ca}{2a+b}\right)\)\(=\frac{1}{9}\left(\text{ ∑}\frac{ca}{2b+c}+\text{ ∑}\frac{2ca}{2a+b}\right)\)\(=\frac{1}{9}\left(\text{ ∑}\frac{ca}{2b+c}+\text{ ∑}\frac{2ab}{2b+c}\right)=\frac{a+b+c}{9}\)

Đặt VT=A rồi áp dụng bđt cauchy-Schwarz cho VT ta có 

\(T^2\le3\left(\frac{a}{4a+4b+c}+\frac{b}{4b+4c+a}+\frac{c}{4c+4a+b}\right)\)\(\le3\cdot\frac{1}{3}=1\Leftrightarrow T\le1\)

Dấu = xảy ra khi a=b=c 

c bạn tự làm nhé mình mệt rồi :D

2 tháng 7 2016

- Ôi má ơi, má patient dử dậy :)

6 tháng 9 2018

a) Áp dụng bdt cosi schwars ta có 

 \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\)

\(\ge\frac{\left(a+b+c+d\right)^2}{a+b+b+c+c+d+d+a}\)

\(=\frac{a+b+c+d}{2}\)

6 tháng 9 2018

bh mk can mn ho tro jup mk 2 cau cuoi nha