Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{98}{2^{98}}+\frac{99}{2^{99}}+\frac{100}{2^{100}}\)
\(2A=1+\frac{2}{2}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{99}{2^{98}}+\frac{100}{2^{99}}\)
\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}-\frac{100}{2^{100}}\) (lấy 2A - A = A)
Đặt \(B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\)
\(2B=2+1+\frac{1}{2}+...+\frac{1}{2^{97}}+\frac{1}{2^{98}}\)
\(B=2B-B=2-\frac{1}{2^{99}}\)
Do đó: \(A=2-\frac{1}{2^{99}}-\frac{100}{2^{100}}< 2\)
A=-1++(-1)+..+-(1) có 50 số -1
=>A=-1x50=-50
B=(1-2-3+4)+(5-6-7+8)+...+(97-98-99+100)
B=0+0+0+..+0
B=0
C=2^100-(2^99+2^98+...+1)
C=2^100-(2^100-1)
C=1
P/s: làm từng phần một
1.
\(2A=2^2+2^3+...+2^{101}\)
\(2A-A=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+...+2^{100}\right)\)
\(A=2^{101}-2\)
2.
\(\frac{A}{2}=\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{59\cdot61}\)
\(\frac{A}{2}=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\)
\(\frac{A}{2}=\frac{1}{5}-\frac{1}{61}\)
\(\frac{A}{2}=\frac{56}{305}\)
\(A=\frac{112}{305}\)
Bạn xem lại đề câu a) cho rõ lại
Câu b) Tại x=2013 thì B=x2013-(x+1)x2012+(x+1)x2011-(x+1)x2010+...-(x+1)x2+(x+1)x-1
= x2013-x2013-x2012+x2012+x2011-x2011-x2010+..-x3 - x2+x2+x-1
= x-1 = 2012
A = (1+3+ 32 + 33) + (34 + 35 + 36 + 37) + ...+ (396 + 397 + 398 + 399) (Có 100 số nên có 25 nhóm, mỗi nhóm có 4 số )
A = 40. 1 + 34.(1 + 3 + 32 + 33) +...+ 396.(1 + 3 + 32 + 33) = 40.1 + 40.34 + ...+ 40.396 = 40.( 1+ 34 + ... + 396)
=> A chia hết cho 4 và chia hết cho 40
D = (2 + 22 + 23 + 24 ) + (25 + 26 + 27 + 28) + ...+ (297 + 298 + 299 + 2100)
D = 30 .1 + 25. (2 + 22 + 23 + 24 ) + ... + 297. (2 + 22 + 23 + 24 )
D = 30.1 + 30.25 + ...+ 30.297 = 30. (1 + 25 + ...+ 297)
=> D chia hết cho 30 nên chia hết cho 15 và D có tận cùng là 0
2) 540 = (54)10 = 62510 > 62010 => 540 > 62010
1030 = (103)10 = 100010 < 102410 = (210)10 = 2100
333444 = (3334)111 = (34.1114)111 = 81111.111444
444333 = (4443)111 = (43.1113)111 = 64111.111333 < 81111.111444
=> 333444 > 444333
b) Đặt \(C=\frac{1}{4}+\frac{1}{4^2}+....+\frac{1}{4^{1000}}\)
\(\frac{1}{4}A=\frac{1}{4^2}+\frac{1}{4^3}+.......+\frac{1}{4^{1001}}\)
\(A-\frac{1}{4}A=\left(\frac{1}{4^2}-\frac{1}{4^2}\right)+\left(\frac{1}{4^3}-\frac{1}{4^3}\right)+.....+\frac{1}{4}-\frac{1}{4^{1001}}\)
\(\frac{3}{4}A=\frac{1}{4}-\frac{1}{4^{1001}}\)
Đến đây Đặt \(\frac{3}{4}B=\frac{1}{4}\)
Ta có: \(\frac{3}{4}A<\frac{3}{4}B\) \(\rightarrow A