K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 6 2019

Do \(f\left(x\right)\) nghịch biến \(\Rightarrow\min\limits_{\left[1;2\right]}f\left(x\right)=f\left(2\right)\); \(\max\limits_{\left[1;2\right]}=f\left(1\right)\)

Thay \(x=1\) vào ta được:

\(f^2\left(1\right)-f\left(1\right)=6\Rightarrow f^2\left(1\right)-f\left(1\right)-6=0\Rightarrow\left[{}\begin{matrix}f\left(1\right)=3\\f\left(1\right)=-2\end{matrix}\right.\)

Thay \(x=2\) vào ta được:

\(f^2\left(2\right)-2f\left(2\right)-120=0\Rightarrow\left[{}\begin{matrix}f\left(2\right)=12>f\left(1\right)\left(l\right)\\f\left(2\right)=-10\end{matrix}\right.\)

\(\Rightarrow\min\limits_{\left[1;2\right]}f\left(x\right)=-10\)

Đạo hàm 2 vế giả thiết:

\(\left[f'\left(x\right)-1\right]f\left(x\right)+f'\left(x\right)\left[f\left(x\right)-x\right]=6x^5+12x^3+4x\)

- Nếu \(f\left(1\right)=3\) thay \(x=1\) vào biểu thức trên ta được:

\(\left[f'\left(1\right)-1\right].3+f'\left(1\right).\left[3-1\right]=22\) \(\Rightarrow f'\left(1\right)=5>0\) (vô lý do \(f\left(x\right)\) nghịch biến trên R nên \(f'\left(x\right)< 0\) \(\forall x\))

\(\Rightarrow f\left(1\right)=-2\Rightarrow\max\limits_{\left[1;2\right]}f\left(x\right)=-2\)

30 tháng 6 2018

Đáp án D

22 tháng 10 2017

Dựa vào đồ thị hàm số ta thấy: f’(x) = 0 khi và chỉ khi x= 1; 

Ta có bảng biến thiên :

Dựa vào bảng biến thiên ta thấy f(x) < 0 với mọi x≠ ± 2

Xét hàm số y= ( f( x) ) 2 có đạo hàm y’ = 2f(x). f’ (x)

Bảng xét dấu:

Chọn D.

 

23 tháng 7 2018

Chọn A

Ta có: 

Với  nên f(x) đồng biến trên 

Với  nên f(x) nghich biến trên

Suy ra:  f(x) nghich biến trên  ℝ  nên  và  

Từ đây ,ta suy ra: 

=> chọn đáp án A

NV
22 tháng 6 2021

1.

\(f'\left(x\right)=\left(x^2-1\right)\left(x-2\right)^2\left(x-3\right)\) có các nghiệm bội lẻ \(x=\left\{-1;1;3\right\}\)

Sử dụng đan dấu ta được hàm đồng biến trên các khoảng: \(\left(-1;1\right);\left(3;+\infty\right)\)

Hàm nghịch biến trên các khoảng \(\left(-\infty;-1\right);\left(1;3\right)\)

2.

\(y'=4x^3-4x=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=1\end{matrix}\right.\)

Lập bảng xét dấu y' ta được hàm đồng biến trên \(\left(-1;0\right);\left(1;+\infty\right)\)

Hàm nghịch biến trên \(\left(-\infty;-1\right);\left(0;1\right)\)

1 tháng 1 2017