Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=5\left(x+y+z\right)^2+\left(x^2+y^2+z^2\right)+2.\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)
Áp dụng BĐT Cauchy-schwarz ta có:
\(M\ge5.\left(\frac{3}{4}\right)^2+\frac{\left(x+y+z\right)^2}{3}+2.\frac{\left(1+1+1\right)^2}{4\left(x+y+z\right)}=5.\frac{9}{16}+\frac{\frac{9}{16}}{3}+2.\frac{9}{\frac{4.3}{4}}=9\)
Dấu " = " xảy ra <=> a=b=c=1/4 ( cái này bạn tự giải rõ nhé)
Bài làm của em đầu tiên phải giả sử: \(3\ge y\ge x\ge z\ge0\)
Xét dấu nó thì e chỉ cần xét từng cái là được
Cái thứ nhất:
\(\sqrt{x+y}+\sqrt{y+z}=\sqrt{y}+\sqrt{x+y+z}\)
\(\Leftrightarrow\sqrt{\left(x+y\right)\left(y+z\right)}=\sqrt{y\left(x+y+z\right)}\)
\(\Leftrightarrow xz=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\z=0\end{cases}}\)
Cái thứ 2:
\(\sqrt{y}+\sqrt{z+x}=\sqrt{x+y+z}\)
\(\Leftrightarrow2\sqrt{y\left(x+z\right)}=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=0\\x+z=0\end{cases}}\)
Kết hợp cả 2 điều kiện thì suy ra được
\(x=z=0;y=3\)
Bài 4 nha
Áp dụng BĐT cô si ta có
\(\frac{1}{x^2}+x+x\ge3\sqrt[3]{\frac{1}{x^2}.x.x}=3.\)
Tương tự với y . \(A\ge6\)dấu = xảy ra khi x=y=1
Bài 42 , Có \(m=\sqrt[3]{4+\sqrt{80}}-\sqrt[3]{\sqrt{80}-4}\)
\(\Rightarrow m^3=4+\sqrt{80}-\sqrt{80}+4-3m\sqrt[3]{\left(4+\sqrt{80}\right)\left(\sqrt{80-4}\right)}\)
\(\Leftrightarrow m^3=8-3m\sqrt[3]{80-16}\)
\(\Leftrightarrow m^3=8-3m\sqrt[3]{64}\)
\(\Leftrightarrow m^3=8-12m\)
\(\Leftrightarrow m^3+12m-8=0\)
Vì vậy m là nghiệm của pt \(x^3+12x-8=0\)
Bài 44, c, \(D=\sqrt[3]{2+10\sqrt{\frac{1}{27}}}+\sqrt[3]{2-10\sqrt{\frac{1}{27}}}\)
\(\Rightarrow D^3=2+10\sqrt{\frac{1}{27}}+2-10\sqrt{\frac{1}{27}}+3D\sqrt[3]{\left(2+10\sqrt{\frac{1}{27}}\right)\left(2-10\sqrt{\frac{1}{27}}\right)}\)
\(\Leftrightarrow D^3=4+3D\sqrt[3]{4-\frac{100}{27}}\)
\(\Leftrightarrow D^3=4+3D\sqrt[3]{\frac{8}{27}}\)
\(\Leftrightarrow D^3=4+2D\)
\(\Leftrightarrow D^3-2D-4=0\)
\(\Leftrightarrow D^3-4D+2D-4=0\)
\(\Leftrightarrow D\left(D^2-4\right)+2\left(D-2\right)=0\)
\(\Leftrightarrow D\left(D-2\right)\left(D+2\right)+2\left(D-2\right)=0\)
\(\Leftrightarrow\left(D-2\right)\left[D\left(D+2\right)+2\right]=0\)
\(\Leftrightarrow\left(D-2\right)\left(D^2+2D+2\right)=0\)
\(\Leftrightarrow\left(D-2\right)\left[\left(D+1\right)^2+1\right]=0\)
Vì [....] > 0 nên D - 2 = 0 <=> D = 2
Ý d làm tương tự nhá
\(\sqrt{1+\sqrt{2}}.P=\sqrt{1+2x}.\sqrt{1+\sqrt{2}}+\sqrt{1+2y}.\sqrt{1+\sqrt{2}}\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt{1+\sqrt{2}}.P\le\frac{1+2x+1+\sqrt{2}+1+2y+1+\sqrt{2}}{2}\)
Áp dụng BĐT Cauchy-schwarz ta có:
\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)
\(\Leftrightarrow\sqrt{2}\ge x+y\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=\frac{1}{\sqrt{2}}\)
\(\Rightarrow\sqrt{1+\sqrt{2}}P\le\frac{1+2x+1+\sqrt{2}+1+2y+1+\sqrt{2}}{2}\le\frac{4+2.\sqrt{2}+2.\sqrt{2}}{2}=2+2\sqrt{2}\)
\(\Leftrightarrow P\le\frac{2+2.\sqrt{2}}{\sqrt{1+\sqrt{2}}}\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=\frac{1}{\sqrt{2}}\)
Mới nghĩ ra được max. Các cao nhân ai thấy sai thì sửa hộ e nhé.
áp dụng bất đẳng thức bunhiacopxki
\(P^2=\left(1.\sqrt{1+2x}+1.\sqrt{1+2y}\right)^2\le\left(1^2+1^2\right)\left(1+2x+1+2y\right)\)
\(=4\left(1+x+y\right)\)
Lại có \(\left(x.1+y.1\right)^2\le\left(x^2+y^2\right)\left(1^2+1^2\right)\Leftrightarrow\left(x+y\right)^2\le2\left(x^2+y^2\right)=2.\)
\(\Rightarrow|x+y|\le\sqrt{2}.\Rightarrow-\sqrt{2}\le x+y\le\sqrt{2}\Leftrightarrow-\sqrt{2}+1\le1+x+y\le\sqrt{2}+1\)
\(\Rightarrow P^2\le4\left(1+x+y\right)\le4.\left(\sqrt{2}+1\right)\)
\(\Leftrightarrow-2\sqrt{\sqrt{2}+1}\le P\le2\sqrt{\sqrt{2}+1}\)
Vậy Max \(P=2\sqrt{\sqrt{2}+1}\Leftrightarrow x=y=\frac{1}{\sqrt{2}}.\)
sorry nhìu , nếu có đk x, y>=0 thì mk mới tìm được minP=3
nếu k phải thì mong cao nhân chỉ cho ak