K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2021

cái này mà là toán lớp 1 á chịu thua ko giải được

26 tháng 11 2021

tôi ko hiẻu bạn đang nói cái méo gì

26 tháng 11 2021

toán lớp 1 đây á

26 tháng 11 2021

lop1 :))))))))

bi

9 tháng 1 2021

bạn trung học hay tiểu học vậy

9 tháng 12 2015

tớ đăng bài này làm hộ ng bạn đấy :b

25 tháng 7 2020

Câu 1:
\(4\sqrt[4]{\left(a+1\right)\left(b+4\right)\left(c-2\right)\left(d-3\right)}\le a+1+b+4+c-2+d-3=a+b+c+d\)

Dấu = xảy ra khi a = -1; b = -4; c = 2; d= 3

25 tháng 7 2020

\(\frac{a^2}{b^5}+\frac{1}{a^2b}\ge\frac{2}{b^3}\)\(\Leftrightarrow\)\(\frac{a^2}{b^5}\ge\frac{2}{b^3}-\frac{1}{a^2b}\)

\(\frac{2}{a^3}+\frac{1}{b^3}\ge\frac{3}{a^2b}\)\(\Leftrightarrow\)\(\frac{1}{a^2b}\le\frac{2}{3a^3}+\frac{1}{3b^3}\)

\(\Rightarrow\)\(\Sigma\frac{a^2}{b^5}\ge\Sigma\left(\frac{5}{3b^3}-\frac{2}{3a^3}\right)=\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)

6 tháng 8 2018

Vãi cả "Toán Lớp 1"

26 tháng 2 2022

đây đích thực có phải lớp 1 ko ak?

chắc bn đây phải cấp 2 r

29 tháng 12 2017

ta có hệ pt 

<=>\(\hept{\begin{cases}x^3-3x-2=y-2\\y^3-3y-2=z-2\\z^3-3z-2=2-x\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x-2\right)\left(x+1\right)^2=y-2\\\left(y-2\right)\left(y+1\right)^2=z-2\\\left(z-2\right)\left(z+1\right)^2=2-x\end{cases}}}\)

nhân từng vế của 3 pt, ta có 

\(\left(x-2\right)\left(y-2\right)\left(z-2\right)\left(x+1\right)^2\left(y+1\right)^2\left(z+1\right)^2=-\left(x-2\right)\left(y-2\right)\left(z-2\right)\)

<=>\(\left(x-2\right)\left(y-2\right)\left(z-2\right)\left[\left(x+1\right)^2\left(y+1\right)^2\left(z+1\right)^2+1\right]=0\)

<=> x=2 hoặc y=2 hoặc z=2

đến đây bạn tự thay vào và giai tiếp nhé

30 tháng 12 2017

bạn làm cho ai vậy

8 tháng 8 2019

toán lớp 1 ??? giỡn quài , phi logic :3

8 tháng 8 2019

Ap dung bdt AM-GM cho 2 so ko am A,B ta co 

\(\sqrt{A}+\sqrt{B}\)\(\le\)\(2\sqrt{\frac{A+B}{2}}\)

VP =\(\sqrt{AB}.\left(\sqrt{A}+\sqrt{B}\right)\le\frac{A+B}{2}.2\sqrt{\frac{A+B}{2}}\)

    =>VP2 \(\le4.\frac{\left(A+B\right)^3}{4}=\left(A+B\right)^3\left(3\right)\)

Tu (2),(3) => DPCM