Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt Cauchy cho 2 số không âm :
\(x^2+\frac{1}{x}\ge2\sqrt[2]{\frac{x^2}{x}}=2.\sqrt{x}\)
\(y^2+\frac{1}{y}\ge2\sqrt[2]{\frac{y^2}{y}}=2.\sqrt{y}\)
Cộng vế với vế ta được :
\(x^2+y^2+\frac{1}{x}+\frac{1}{y}\ge2.\sqrt{x}+2.\sqrt{y}=2\left(\sqrt{x}+\sqrt{y}\right)\)
Vậy ta có điều phải chứng mình
Ta đi chứng minh:\(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)* đúng *
Khi đó:
\(\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b\right)+abc}=\frac{1}{ab\left(a+b+c\right)}=\frac{c}{abc\left(a+b+c\right)}\)
Tương tự:
\(\frac{1}{b^3+c^3+abc}\le\frac{a}{abc\left(a+b+c\right)};\frac{1}{c^3+a^3+abc}\le\frac{b}{abc\left(a+b+c\right)}\)
\(\Rightarrow LHS\le\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}\)
\(BĐT\Leftrightarrow\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}+2\right)-3\left(\frac{x}{y}+\frac{y}{x}\right)+2\ge0\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2-3\left(\frac{x}{y}+\frac{y}{x}\right)+2\ge0\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}-1\right)\left(\frac{x}{y}+\frac{y}{x}-2\right)\ge0\) (Luôn đúng vì \(\frac{x}{y}+\frac{y}{x}\ge2\forall x;y>0\))
Áp dụng BĐT AM-GM ta có:
\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\ge\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}\)
\(=\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}=\frac{\left(x+y+\frac{x+y}{xy}\right)^2}{2}\)
Lại có: \(1=x+y\ge2\sqrt{xy}\Rightarrow1\ge4xy\Rightarrow\frac{1}{xy}\ge4\)
Khi đó \(A\ge\frac{\left(1+\frac{1}{xy}\right)^2}{2}=\frac{\left(1+4\right)^2}{2}=\frac{5^2}{2}=\frac{25}{2}\)
Đẳng thức xảy ra khi \(x=y=\frac{1}{2}\)
dùng bđt phụ \(\frac{x^2}{a}+\frac{y^2}{b}\ge\frac{\left(x+y\right)^2}{a+b}\) với bđt Cô-si nhé
theo bất đẳng thức côsi thì
\(x+\frac{1}{x}\ge2\sqrt{x\times\frac{1}{x}}=2\)
\(\Rightarrow\left(x+\frac{1}{x}\right)^2\ge2^2=4\)(1)
tương tự \(\left(y+\frac{1}{y}\right)^2\ge4\)(2)
Từ (1),(2)\(\Rightarrow\)đpcm
Đặt \(\dfrac{x}{y}+\dfrac{y}{x}=a\)\(\Rightarrow\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2=a^2\Rightarrow\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}=a^2-2\)
Ta có \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4=a^2-2+4=a^2+2\)
\(3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)=3a\)
Ta có \(a^2+2-3a=a^2-2.a.\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{1}{4}=\left(a-\dfrac{3}{2}\right)^2-\dfrac{1}{4}\)
lạ có \(\dfrac{x}{y}+\dfrac{y}{x}-2=\dfrac{x^2}{xy}-\dfrac{2xy}{xy}+\dfrac{y^2}{xy}=\dfrac{\left(x-y\right)^2}{xy}\ge0\)
\(\Rightarrow\dfrac{x}{y}+\dfrac{y}{x}\ge2\)\(\Rightarrow a\ge2\Rightarrow a-\dfrac{3}{2}\ge\dfrac{1}{2}\)\(\Rightarrow\left(a-\dfrac{3}{2}\right)^2\ge\dfrac{1}{4}\Rightarrow\left(a-\dfrac{3}{2}\right)^2-\dfrac{1}{4}\ge0\)
\(\Rightarrow a^2+2-3a\ge0\Rightarrow a^2+2\ge3a\Rightarrow\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\ge3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\)
\(\left\{{}\begin{matrix}x;y>0\\\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\ge3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\end{matrix}\right.\) \(\begin{matrix}\left(1\right)\\\left(2\right)\end{matrix}\)
từ (2) có \(\Leftrightarrow\left(\dfrac{x^2}{y^2}+2.\dfrac{x}{y}.\dfrac{y}{x}+\dfrac{y^2}{x^2}\right)+2-3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\ge0\)
\(\Leftrightarrow\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2-3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+2\ge0\)
\(\Leftrightarrow\left[\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2-2\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\right]-\left[\left(\dfrac{x}{y}+\dfrac{y}{x}\right)-2\right]\ge0\)
\(\Leftrightarrow\left(\dfrac{x}{y}+\dfrac{y}{x}-2\right)\left(\dfrac{x}{y}+\dfrac{y}{x}-1\right)\ge0\) (3)
từ (1) có \(\dfrac{x}{y}+\dfrac{y}{x}=\left(\sqrt{\dfrac{x}{y}}-\sqrt{\dfrac{y}{x}}\right)^2+2\ge2\) (4)
từ (4) ; \(\left\{{}\begin{matrix}\left(\dfrac{x}{y}+\dfrac{y}{x}-1\right)>0\\\dfrac{x}{y}+\dfrac{y}{x}-2\ge0\end{matrix}\right.\) (I)
từ (I) => (3) đúng mọi phép biến đổi là <=> đẳng thức khi \(\dfrac{x}{y}=\dfrac{y}{x}\Rightarrow x=y\)=> dpcm
Ta có: \(4xy\le\left(x+y\right)^2\)
Lại có: \(x;y>0\)
\(\Rightarrow\left(x+y\right)^2xy>0\)
\(\Rightarrow\frac{4xy}{\left(x+y\right)^2xy}\le\frac{\left(x+y\right)^2}{\left(x+y\right)^2xy}\)
\(\Rightarrow\frac{4}{\left(x+y\right)^2}\le\frac{1}{xy}\)
Ta có :
\(\left(x+y\right)^2-4xy\)
\(=x^2+2xy+y^2-4xy\)
\(=x^2-2xy+y^2\)
\(=\left(x-y\right)^2\ge0\)
\(\Rightarrow\left(x+y\right)^2\ge4xy\)
Lại có : \(x,y>0\)
\(\Rightarrow\frac{4}{\left(x+y\right)^2}\le\frac{4}{4xy}\)
\(\Rightarrow\frac{4}{\left(x+y\right)^2}\le\frac{1}{xy}\)<đpcm>