Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(M=8\left(x^2+y^2+2x^2y+2xy^2\right)-5\left(x+y\right)+2018\)
\(M=8\left[\left(x+y\right)^2-2xy+2xy\left(x+y\right)\right]-5+2018\)
\(=8\left[1-2xy+2xy\right]+2013\)
=8+2013
=2021
mk ko vt lại đề
=> (4x^2+8xy+4y^2)+(x^2-2x+1)+(y^2+2y+1)=0
=>(2x+2y)^2+(x-1)^2+(y+1)^2=0
...... phần này bn tự làm đc
=>x=1,y=-1
thay vào là dc
Ta có : \(5x^2+5y^2+8xy-2x+2y+2=0\)
=> \(\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)=0\)
=> \(\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
Ta có \(\left(2x+2y\right)^2\ge0\forall x,y\) , \(\left(x-1\right)^2\ge0\forall x\) , \(\left(y+1\right)^2\ge0\forall x\)
=> \(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\ge0\forall x,y\)
=> \(\hept{\begin{cases}x+y=0\\x-1=0\\y+1=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=0\\x=1\\y=-1\end{cases}}}\)
Thay vào M ta có:
\(M=0^{2016}+\left(1-2\right)^{2018}+\left(-1+1\right)^{2019}=1\)
\(5x^2+5y^2+8xy-2x+2y+2=0\)
\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
Ta thấy \(VT\ge VP\forall x;y\) để đấu "=" xảy ra \(\Leftrightarrow x=1;y=-1\) thay vào M :
\(M=\left(-1+1\right)^{2015}+\left(1-2\right)^{2016}+\left(-1+1\right)^{2017}=1\)
\(5x^2+5y^2+8xy+2x-2y+2=0\)
\(\Leftrightarrow\left(x^2+2x+1\right)+\left(y^2-2y+1\right)+4\left(x^2+2xy+y^2\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+4\left(x+y\right)^2=0\)
\(\Rightarrow x=-1;y=1\)
Khi đó:
\(M=\left(1-1\right)^{2010}+\left(2-1\right)^{2011}+\left(1-1\right)^{2012}\)
\(=1\)
Lời giải:
a)
\(S=12(x^3+y^3)+16x^2y^2+34xy\)
\(=12[(x+y)^3-3xy(x+y)]+16x^2y^2+34xy\)
\(=12(1-3xy)+16x^2y^2+34xy=12+16x^2y^2-2xy\)
\(=(4xy-\frac{1}{4})^2+\frac{191}{16}\geq \frac{191}{16}\)
Dấu "=" xảy ra khi \(\left\{\begin{matrix} x+y=1\\ xy=\frac{1}{16}\end{matrix}\right.\Leftrightarrow (x,y)=(\frac{2+\sqrt{3}}{4}, \frac{2-\sqrt{3}}{4})\)
Vậy \(S_{\min}=\frac{191}{16}\) khi \(\Leftrightarrow (x,y)=(\frac{2+\sqrt{3}}{4}, \frac{2-\sqrt{3}}{4})\) và có hoán vị.
b)
\(A=5(x^3+y^3)+12xy+4x^2y^2\)
\(=5[(x+y)^3-3xy(x+y)]+12xy+4x^2y^2\)
\(=5(1-3xy)+12xy+4x^2y^2\)
\(=5+4x^2y^2-3xy\)
Áp dụng BĐT Cô-si: $1=x+y\geq 2\sqrt{xy}\Rightarrow xy\leq \frac{1}{4}$
$A=4x^2y^2-3xy+5=xy(4xy-1)-\frac{1}{2}(4xy-1)+4,5=(xy-\frac{1}{2})(4xy-1)+4,5$
Vì $xy\leq \frac{1}{4}\Rightarrow 4xy-1\leq 0; xy-\frac{1}{2}< 0\Rightarrow (xy-\frac{1}{2})(4xy-1)\geq 0$
$\Rightarrow A=(xy-\frac{1}{2})(4xy-1)+4,5\geq 4,5$
Vậy $A_{\min}=4,5$ khi $x=y=\frac{1}{2}$
kho....................wa..................troi.......................thi.....................ret.................lanh................wa..................tich............................ung.........................ho..............minh......................cho....................do....................lanh
Ta có: 5x2+5y2+8xy-2x+2y+2=0
=> 4x2+8xy+4y2+x2-2x+1+y2+2y+1=0
=> (2x+2y)2+(x-1)2+(y+1)2=0
=> {2x+2y=0 => x=-y
{x-1 = 0 => x=1
{y+1 =0 => y=-1
=> x=1, y=-1
Thay vào biểu thức M, ta có:
M=(1+-1)2015+(1-2)2016+(-1+1)2017=0+1+0=1 (đpcm)
\(M=8x^2+16x^2y+16xy^2+8y^2-5x-5y+2018\)
\(=8\left(x+y\right)^2-16xy+16x^2y+16xy^2\)\(-5\left(x+y\right)+2018\)
\(=8\left(x+y\right)^2+16xy\left(x+y-1\right)-5\left(x+y\right)+2018\)
Thay \(x+y=1\)
\(\Rightarrow M=8+16xy.\left(1-1\right)-5.1+2018\)
\(\Rightarrow M=2021\)
Hôm trước chưa rảnh, hôm nay đáp lễ nè :))