Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x+y=\frac{x}{2}+\frac{x}{2}+\frac{x}{2}+\frac{x}{2}+y\ge5\sqrt[5]{\frac{x^4y}{16}}\)
\(5x^2+5y^2=\frac{5}{4}x^2+\frac{5}{4}x^2+\frac{5}{4}x^2+\frac{5}{4}x^2+5y^2\ge5\sqrt[5]{\frac{5^5}{4^4}x^8y^2}=5^2.\sqrt[5]{\frac{1}{4^4}}.\left(\sqrt[5]{x^4y}\right)^2\)
\(\Rightarrow\sqrt{5x^2+5y^2}\ge5.\sqrt[5]{\frac{1}{2^4}}.\sqrt[5]{x^4y}\)
\(10=2x+y+\sqrt{5x^2+5y^2}\ge10.\sqrt[5]{\frac{1}{16}}\sqrt[5]{x^4y}\)
\(\Rightarrow\sqrt[5]{x^4y}\le\sqrt[5]{16}\)\(\Rightarrow x^4y\le16\)
\(P=\sqrt{\frac{1}{36}\left(11a+7b\right)^2+\frac{59\left(a-b\right)^2}{36}}+\sqrt{\frac{1}{36}\left(7a+11b\right)+\frac{59\left(a-b\right)^2}{36}}\)
\(=\sqrt{\frac{1}{16}\left(3a+5b\right)^2+\frac{5\left(a-b\right)^2}{16}}+\sqrt{\frac{1}{16}\left(5a+3b\right)^2+\frac{5\left(a-b\right)^2}{16}}\)
\(\ge\frac{1}{6}\left(11a+7b\right)+\frac{1}{6}\left(7a+11b\right)+\frac{1}{4}\left(3a+5b\right)+\frac{1}{4}\left(5a+3b\right)\)
\(=5\left(a+b\right)=5.2016=10080\)
ta dễ chứng minh được \(x+y\ge\frac{2\sqrt{2}}{5}-\frac{2}{5}\)\(\Rightarrow\)\(x+y+\frac{2\sqrt{2}}{5}-\frac{2}{5}>0\)
\(P=\frac{5\left(x+y+\frac{2\sqrt{2}}{5}-\frac{2}{5}\right)\left(\frac{5}{2}\left(x+y-\left(\frac{2\sqrt{2}}{5}-\frac{2}{5}\right)\right)\left(\frac{5}{2}\left(x+y\right)+\sqrt{2}+1\right)-\frac{9}{4}\left(x-y\right)^2\right)}{\frac{5}{2}\left(x+y\right)+\sqrt{2}+1}\)
\(+\left(\frac{\frac{45}{2}\left(x+y+\frac{2\sqrt{2}}{5}-\frac{2}{5}\right)}{5\left(x+y\right)+\sqrt{2}+1}+\frac{9}{2}\right)\left(x-y\right)^2+6-4\sqrt{2}\ge6-4\sqrt{2}\)
Dấu "=" xảy ra khi \(x=y=\frac{\sqrt{2}-1}{5}\)
Ta chứng minh: \(P\ge6-4\sqrt{2}+\left(2-\sqrt{2}\right)\left(4x^2+4y^2+17xy+5x+5y-11\right)\)
Hay là:
\(\frac{\left(9+4\sqrt{2}\right)\left(98x-298y-130+225\sqrt{2}y+85\sqrt{2}\right)^2}{9604}+\frac{18\left(2\sqrt{2}-1\right)\left(-5y-1+\sqrt{2}\right)^2}{36+16\sqrt{2}}\ge0\)
Việc còn lại là của mọi người.
Ta có:
\(x^2+y^2-2xy+2x-4y+15=0\)
\(\Rightarrow\hept{\begin{cases}x^2-\left(2y-2\right)x+y^2-4y+15=0\\y^2-\left(2x+4\right)+x^2+2x+15=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\Delta'_x=\left(y-1\right)^2-\left(y^2-4y+15\right)\ge0\\\Delta'_y=\left(x+2\right)^2-\left(x^2+2x+15\right)\ge0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}y\ge7\\x\ge\frac{11}{2}\end{cases}}\)
\(\Rightarrow4x^2+y^2\ge4.\left(\frac{11}{2}\right)^2+7^2=170\)
Dễ thấy dấu = không xảy ra nên
\(\Rightarrow4x^2+y^2>170\)
Cho 2 số thực x,y khác 0 thay đổi và thỏa mãn: $(x+y)xy=x^{2}+y^{2}-xy$ .Tìm GTLN của $A=\frac{1}{x^{3}}+\frac{1}{y^{3}}$ - Bất đẳng thức và cực trị - Diễn đàn Toán học
Mình nghĩ là làm như này nè:
Dễ cm:
+: \(\left(a+b\right)^2\le\)\(2\left(a^2+b^2\right)\)(với mọi a, b) ... Áp dụng => \(\left(x+y\right)^2\le\)\(2\)<=> \(-\sqrt{2}\le x+y\)\(\le\sqrt{2}\)
+: \(\sqrt{a+b}\le\)\(\sqrt{a}+\sqrt{b}\)\(\le\sqrt{2\left(a+b\right)}\)(Cái đầu dùng tương đương còn cái hai dùng bđt BCS)
ÁP dụng =>\(\sqrt{8-5\sqrt{2}}\le\) \(\sqrt{8+5\left(x+y\right)}\le\)\(T\)\(\le\sqrt{16+10\left(x+y\right)}\)\(\le\sqrt{16+10\sqrt{2}}\)
Dấu "=" <=> ...
Bạn @Đậu Đậu gì đó ơi, Bạn giải tới đó thì max=\(16+10\sqrt{2}\)thì mình hiểu rồi , còn min =??? ghi rõ hộ mình nhé
7. \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)
\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)
\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)
Vậy \(S_{min}=1936\) \(\Leftrightarrow\) \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)
8. \(x^2-5x+14-4\sqrt{x+1}=0\) (ĐK: x > = -1).
\(\Leftrightarrow\) \(\left(x+1\right)-4\sqrt{x+1}+4+\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow\) \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)
Với mọi x thực ta luôn có: \(\left(\sqrt{x+1}-2\right)^2\ge0\) và \(\left(x-3\right)^2\ge0\)
Suy ra \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2\ge0\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\left(\sqrt{x+1}-2\right)^2=0\\\left(x-3\right)^2=0\end{cases}}\) \(\Leftrightarrow\) x = 3 (Nhận)