K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2020

\(x^2-4mx+m^2-2m+1=0\)

\(\Delta'=\left(-2m\right)^2-\left(m^2-2m+1\right)=4m^2-m^2+2m-1=3m^2+2m-1\)

* Pt có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'>0\Leftrightarrow3m^2+2m-1>0\Leftrightarrow\left[{}\begin{matrix}m< -1\\m>\frac{1}{3}\end{matrix}\right.\)

* Ta có: \(a.c=m^2-2m+1=\left(m-1\right)^2\ge0\)

=> x1, x2 không thể có hai nghiệm trái dấu

* Pt có 2 nghiệm phân biệt khi \(\left[{}\begin{matrix}m< -1\\m>\frac{1}{3}\end{matrix}\right.\) (1)

Theo định lí Vi-ét: \(\left\{{}\begin{matrix}S=x_1+x_2=4m\\P=x_1x_2=\left(m-1\right)^2\end{matrix}\right.\)

\(\left|\sqrt{x_1}-\sqrt{x_2}\right|=1\)

\(\Rightarrow\left(\sqrt{x_1}-\sqrt{x_2}\right)^2=1\)

\(\Leftrightarrow x_1-2\sqrt{x_1x_2}+x_2=1\)

\(\Leftrightarrow x_1+x_2-2\sqrt{x_1x_2}=1\)

\(\Leftrightarrow4m-2\sqrt{\left(m-1\right)^2}=1\)

\(\Leftrightarrow-2\left|m-1\right|=1-4m\)

\(\Leftrightarrow\left|m-1\right|=2m-\frac{1}{2}\)

ĐK: \(2m-\frac{1}{2}\ge0\Leftrightarrow m\ge\frac{1}{4}\)

+ TH1: \(m-1=2m-\frac{1}{2}\Leftrightarrow m=-\frac{1}{2}\) (0 t/m)

+ TH2: \(m-1=\frac{1}{2}-2m\Leftrightarrow3m=\frac{3}{2}\Leftrightarrow m=\frac{1}{2}\) (t/m) (2)

(1),(2): Vậy \(m=\frac{1}{2}\) thỏa mãn đề bài

4 tháng 7 2020

dạ vâng, e cảm ơn ạ

17 tháng 12 2022

\(\text{Δ}=\left(m+3\right)^2-4m^2\)

\(=m^2+6m+9-4m^2=-3m^2+6m+9\)

\(=-3\left(m^2-2m-3\right)=-3\left(m-3\right)\left(m+1\right)\)

Để phương trình có hai nghiệm phân biệt thì (m-3)(m+1)<0

=>-1<m<3

b:\(\Leftrightarrow x1+x2+2\sqrt{x_1x_2}=5\)

\(\Leftrightarrow m+3+2\sqrt{m^2}=5\)

=>2|m|=5-m-3=2-m

TH1: m>=0

=>2m=2-m

=>3m=2

=>m=2/3(nhận)

TH2: m<0

=>-2m=2-m

=>-2m+m=2

=>m=-2(loại)

c: P(x1)=P(x2)

=>\(x_1^3+a\cdot x_1^2+b=x_2^3+a\cdot x_2^2+b\)

=>\(\left(x_1-x_2\right)\left(x_1^2+x_1x_2+x_2^2\right)+a\left(x_1-x_2\right)\left(x_1+x_2\right)=0\)

=>(x1-x2)(x1^2+x1x2+x2^2+ax1+ax2)=0

=>x=0 và a=0

=>\(\left\{{}\begin{matrix}a=0\\b\in R\end{matrix}\right.\)

NV
25 tháng 2 2020

Ta có: \(a-b+c=1+2m-2m-1=0\)

Phương trình luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=-1\\x_2=2m+1\end{matrix}\right.\)

Để biểu thức bài toán xác định thì:

\(\left\{{}\begin{matrix}x_1+x_2=2m\ge0\\3+x_1x_2=2-2m\ge0\end{matrix}\right.\) \(\Rightarrow0\le m\le1\)

\(\sqrt{x_1+x_2}+\sqrt{3+x_1x_2}=2m+1\)

\(\Leftrightarrow\sqrt{2m}+\sqrt{2-2m}=2m+1\)

\(\Leftrightarrow2m-\sqrt{2m}+1-\sqrt{2-2m}=0\)

\(\Leftrightarrow\frac{4m^2-2m}{2m+\sqrt{2m}}+\frac{2m-1}{1+\sqrt{2-2m}}=0\)

\(\Leftrightarrow\left(2m-1\right)\left(\frac{2m}{2m+\sqrt{2m}}+\frac{1}{1+\sqrt{2-2m}}\right)=0\)

\(\Leftrightarrow2m-1=0\Rightarrow m=\frac{1}{2}\)

NV
25 tháng 6 2020

\(\Delta'=1-\left(2m-1\right)=2-2m\ge0\Rightarrow m\le1\)

Để biểu thức đề bài xác định thì pt có 2 nghiệm dương

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2>0\\x_1x_2=2m-1>0\end{matrix}\right.\) \(\Rightarrow m>\frac{1}{2}\)

\(\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}=2\Leftrightarrow\sqrt{x_1}+\sqrt{x_2}=2\sqrt{x_1x_2}\)

\(\Leftrightarrow x_1+x_2+2\sqrt{x_1x_2}=4x_1x_2\)

\(\Leftrightarrow2+2\sqrt{2m-1}=4\left(2m-1\right)\)

\(\Leftrightarrow2\left(2m-1\right)-\sqrt{2m-1}-1=0\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{2m-1}=1\\\sqrt{2m-1}=-\frac{1}{2}\left(l\right)\end{matrix}\right.\) \(\Rightarrow m=1\) (thỏa mãn)

25 tháng 4 2015

làm dài lắm nhưng mình nghĩ kết quả cuối cùng là m = -3

 

25 tháng 4 2015

sory nha mik mới hok lớp 6 không giải bài lớp 9 đc

NV
4 tháng 6 2019

\(\Delta=\left(2m+5\right)^2-4\left(2m+1\right)=4m^2+12m+21=\left(2x+3\right)^2+12>0\)

Phương trình luôn có 2 nghiệm pb

Để biểu thức đề bài có nghĩa \(\Rightarrow\left\{{}\begin{matrix}x_1\ge0\\x_2\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2m+5>0\\x_1x_2=2m+1\ge0\end{matrix}\right.\) \(\Rightarrow m\ge-\frac{1}{2}\)

\(P=\left|\sqrt{x_1}-\sqrt{x_2}\right|\Rightarrow P^2=x_1+x_2-2\sqrt{x_1x_2}\)

\(P^2=2m+5-2\sqrt{2m+1}\)

\(P^2=2m+1-2\sqrt{2m+1}+1+4\)

\(P^2=\left(\sqrt{2m+1}-1\right)^2+4\ge4\)

\(\Rightarrow P\ge2\Rightarrow P_{min}=2\) khi \(\sqrt{2m+1}=1\Rightarrow m=0\)

10 tháng 6 2017

pt có 2 ng p.b thì \(\Delta\)> 0 <=> 3m+2m-1>0 <=> m<-1 hoặc m>1/3

vì a.c=(m-1)2\(\ge\)0 => x1,x2 ko trái dấu nhau.

b) bp 2 ve ta được: x1+x2-2\(\sqrt{x_{ }1\times x2}\)=1. thay vi et => k tồn tại m

12 tháng 4 2018

\(\Delta'\) = (-m2)2 - m2 - 2 = m4 - m2 - 2

để pt có 2 nghiệm x1, x2 thì m4 - m2 - 2 \(\ge\) 0

=> (m2 - \(\dfrac{1}{2}\))2 - \(\dfrac{9}{4}\) \(\ge\) 0

\(\left\{{}\begin{matrix}m^2-\dfrac{1}{2}\le-\dfrac{3}{2}\\m^2-\dfrac{1}{2}\ge\dfrac{3}{2}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}m^2\le-1\left(loai\right)\\m^2\ge2\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}m\ge\sqrt{2}\\m\le-\sqrt{2}\end{matrix}\right.\)

theo hệ thức Vi - ét : \(\left\{{}\begin{matrix}x_1+x_2=2m^2\\x_1.x_2=m^2+2\end{matrix}\right.\)

ta có : \(\dfrac{1}{\sqrt{2}}\)x1x2 = 3\(\sqrt{x_1+x_2}\) <=> \(\dfrac{1}{\sqrt{2}}\).(m2 + 2) - 3.\(\sqrt{2m^2}\) = 0

<=> \(\dfrac{\sqrt{2}.m^2}{2}\) + \(\sqrt{2}\) - \(3\sqrt{2}.m\) = 0

<=> m2 - 6m + 2 = 0

\(\Delta'\) = (-3)2 - 2 = 7 > 0 => pt có 2 nghiệm pb

m1 = \(\dfrac{3-\sqrt{7}}{1}\) = 3-\(\sqrt{7}\) ( loại )

m2 = 3+\(\sqrt{7}\) (TM )

vậy để pt có 2 nghiêm jthoar mãn đk trên thì m = 3+\(\sqrt{7}\)

29 tháng 4 2018

camon bn nkahihi

8 tháng 5 2018

xét pt \(x^2-\left(m-1\right)x-m^2+m-1=0\)   \(\left(1\right)\)

từ (1) có  \(\Delta=\left[-\left(m-1\right)\right]^2-4.\left(-m^2+m-1\right)\)

\(\Delta=m^2-2m+1+4m^2-4m+4\)

\(\Delta=5m^2-6m+5\)

\(\Delta=5\left(m^2-\frac{6}{5}m+1\right)\)

\(\Delta=5\left[m^2-2.\frac{3}{5}m+\frac{9}{25}-\frac{9}{25}+1\right]\)

\(\Delta=5\left[\left(m-\frac{3}{5}\right)^2+\frac{16}{25}\right]>0\forall m\)

\(\Rightarrow pt\left(1\right)\)  luôn có 2 nghiệm phân biệt \(\forall m\)

ta có vi - ét \(\hept{\begin{cases}x_1+x_2=m-1\\x_1.x_2=-m^2+m-1\end{cases}}\)

theo bài ra \(\left|x_2\right|-\left|x_1\right|=2\)

\(\Leftrightarrow\left(\left|x_1\right|+\left|x_2\right|\right)=4\)

\(\Leftrightarrow x_1^2+x_2^2+2\left|x_1.x_2\right|=4\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2+2\left|x_1.x_2\right|=4\)

\(\Leftrightarrow\left(m-1\right)^2-2\left(-m^2+m-1\right)+2\left|x_1.x_2\right|=4\)

\(\Leftrightarrow m^2-2m+1+2m^2-2m+2+2\left|x_1.x_2\right|=4\)

\(\Leftrightarrow3m^2-4m+3+2\left|x_1.x_2\right|=4\)

cái này đến đây xét ra 2 trường hợp  rồi đối chiếu với ĐKXĐ là xong