Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOHM vuông tại H và ΔOKM vuông tại K có
OM chung
\(\widehat{HOM}=\widehat{KOM}\)
Do đó: ΔOHM=ΔOKM
b: ta có: ΔOHM=ΔOKM
nên MH=MK
hay ΔMHK cân tại M
c: \(\widehat{KMH}=360^0-90^0-90^0-120^0=60^0\)
nênΔMHK đều
a) xét tg OAH & tg OBH có :
OH chung
OA = OB ( gt )
góc AOH = góc BOH ( Ot p/g góc xOy )
suy ra tg OAH = tg OBH (c. g .c )
b) do tgOAH = tg OBH ( cmt )
suy ra góc OAH= góc OBH ( 2góc tg ứng )
Xét tg ONB & tg OAM có :
góc OAH= góc OBH ( cmt )
OA = OB ( gt )
góc O chung
suy ra tg ONB = tg OAM ( g . c .g )
c) có : OA = OB suy ra O thuộc trung trực AB (1)
tg tự có AH =BH ( 2 c tg ứng của tg OAH = tg OBH )
suy ra H thuộc trung trực OH (2)
từ (1) & (2) suy ra OH trung trực của AB
suy ra OH vuông góc AB
d) bn tự cm theo cách trên ( cm H thuộc trung trưc MN )
A B C I M K
a, Xét tam giác vuông MHC có :
\(\widehat{CMH}+\widehat{HCM}=90^o\)
Xét tam giác vuông ABC có:
\(\widehat{HIB}+\widehat{HCM}=90^o\)
\(\Rightarrow\widehat{CMH}=\widehat{HIB}\)
Xét 2 tam giác : KHM và IHB
MH = HB ( gt )
\(\widehat{CMN}=\widehat{HBI}\left(cmt\right)\)
\(\widehat{MKH}=\widehat{HIB}=90^o\)
\(\Rightarrow\Delta KHM=\Delta IHB\)
b, \(\Rightarrow HK=HI\)
Xét 2 tam giác : KHA và IHA
KM = IH ( cm a )
AN chung
\(\widehat{HKA}=\widehat{AIM}=90^o\)
\(\Rightarrow\Delta KHA=\Delta IHA\)
\(\Rightarrow\widehat{KAH}=\widehat{HAI}\)
Vậy : AH là tia phân giác góc BAC
a, xet △ vuong mhc co ∠cmh + ∠hcm = 90 do xet △ vuong abc co ∠hbi + ∠hcm = 90 do suy ra ∠cmh = ∠hbi xet △ BHI va △ MHK co ∠CMH = ∠HBI [c/m tr] HM = BH [gt] ∠BIH = ∠MKH [=90 do] ➩ △ BHI = △ MHK [ch-gn] b, tu a co △bhi = △mhk ➩ ih = kh xet △aih va △akh co ah chung ih = kh [c/m tr] ∠aih = ∠akh [= 90 do] ➩ △aih = △kah [ch-cgv] ➩ ∠iah = ∠kah ➩ ah la p/g cua ∠bac
a. Xét △OAM và △OBM có:
\(\hat{OAM}=\hat{OBM}=90^o\)
\(OM\) chung
\(\hat{AOM}=\hat{BOM}\) (do M thuộc tia phân giác của \(\hat{xOy}\))
\(\Rightarrow\Delta OAM=\Delta OBM\left(c.h-g.n\right)\)
\(\Rightarrow MA=MB\) (đpcm).
b. Từ a. \(\Rightarrow OA=OB\)
⇒ Tam giác OAB cân tại O.
c. Xét △BME và △AMD có:
\(\hat{MBE}=\hat{MAD}=90^o\)
\(MA=MB\left(cmt\right)\)
\(\hat{AMD}=\hat{BME}\) (đối đỉnh)
\(\Rightarrow\Delta BME=\Delta AMD\left(g.n-c.g.v\right)\)
\(\Rightarrow MD=ME\left(đpcm\right)\)
d. Ta có: \(OA=OB\left(cmt\right)\), \(AD=DE\) (suy ra từ c.)
\(\Rightarrow OA+AD=OB+DE\)
\(\Rightarrow OD=OE\)
⇒ Tam giác ODE cân tại O.
Tam giác ODE cân tại O có OM là đường phân giác ⇒ OM cũng là đường cao.
\(\Rightarrow OM\perp DE\left(đpcm\right)\)