Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức AM - GM:
\(P=4x+3y+\dfrac{6}{x}+\dfrac{9}{2y}\)
\(=\left(\dfrac{3}{2}x+\dfrac{6}{x}\right)+\left(\dfrac{1}{2}y+\dfrac{9}{2y}\right)+\left(\dfrac{5}{2}x+\dfrac{5}{2}y\right)\)
\(\ge2\sqrt{\dfrac{3}{2}x\times\dfrac{6}{x}}+2\sqrt{\dfrac{1}{2}y\times\dfrac{9}{2y}}+\dfrac{5}{2}\times5\)
\(=\dfrac{43}{2}\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\dfrac{3}{2}x=\dfrac{6}{x}\\\dfrac{1}{2}y=\dfrac{9}{2y}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\left(\text{nhận}\right)\)
Vậy \(Min_P=\dfrac{43}{2}\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
Tham khảo bài 8 trong link: Câu hỏi của Nguyễn Linh Chi - Toán lớp - Học toán với OnlineMath
Tham khảo link này : https://olm.vn/hoi-dap/detail/223163065606.html
\(S=x+y+\frac{3}{4x}+\frac{3}{4y}\)
\(=x+y+\frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(\ge x+y+\frac{3}{x+y}\)
\(=\left(x+y+\frac{16}{9\left(x+y\right)}\right)+\frac{11}{9\left(x+y\right)}\)
\(\ge\frac{4}{3}+\frac{11}{9\cdot\frac{4}{3}}=\frac{43}{12}\)
Tại \(x=y=\frac{2}{3}\)
\(T=\dfrac{x}{\sqrt{y}}+\dfrac{y}{\sqrt{x}}=\dfrac{x^2}{x\sqrt{y}}+\dfrac{y^2}{y\sqrt{x}}\ge\dfrac{\left(x+y\right)^2}{x\sqrt{y}+y\sqrt{x}}=\dfrac{1}{x\sqrt{y}+y\sqrt{x}}\)
\(\Rightarrow T\ge\dfrac{1}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}\ge\dfrac{1}{\dfrac{\left(x+y\right)}{2}.\sqrt{2\left(x+y\right)}}=\sqrt{2}\)
\(\Rightarrow T_{min}=\sqrt{2}\) khi \(x=y=\dfrac{1}{2}\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\geq \frac{(x+y+z)^2}{x+y+y+z+z+x}\)
\(\Leftrightarrow A\geq \frac{x+y+z}{2}\)
Áp dụng BĐT AM-GM:
\(\left\{\begin{matrix} x+y\geq 2\sqrt{xy}\\ y+z\geq 2\sqrt{yz}\\ z+x\geq 2\sqrt{zx}\end{matrix}\right.\)
\(\Rightarrow 2(x+y+z)\geq 2(\sqrt{xy}+\sqrt{yz}+\sqrt{zx})=2\)
\(\Rightarrow x+y+z\geq 1\)
Do đó: \(A\geq \frac{x+y+z}{2}\geq \frac{1}{2}\)
Vậy \(A_{\min}=\frac{1}{2}\)
Dấu bằng xảy ra khi \(x=y=z=\frac{1}{3}\)
\(\sqrt{xy}\le\frac{x+y}{2}=\frac{2a}{2}=a\Rightarrow xy\le a^2\)
Ta có : \(A=\frac{x+y}{xy}\ge\frac{2a}{a^2}=\frac{a}{2}\)
Dấu "=" xảy ra khi x = y = a
vậy ....
1)Ta có:
\(A=\left(x^2-4x+4\right)+x+\dfrac{4}{x}+2012=\left(x-2\right)^2+x+\dfrac{4}{x}+2012\)Theo bđt cô-si ta có:
\(x+\dfrac{4}{x}\ge2\sqrt{\dfrac{x.4}{x}}=4\)
\(\left(x-2\right)^2\ge0\)
\(\Rightarrow A\ge0+4+2012\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left(x-2\right)^2=0\\x=\dfrac{4}{x}\end{matrix}\right.\Rightarrow x=2}\)
2)Ta có:
\(B=\left(y^2-4y+4\right)+3y+\dfrac{12}{y}+2012=\left(y-2\right)^2+3y+\dfrac{12}{y}+2012\)Áp dụng bđt cô si ta có:
\(3y+\dfrac{12}{y}\ge2\sqrt{\dfrac{3y.12}{y}}=12\)
\(\left(y-2\right)^2\ge0\)
\(\Rightarrow B\ge0+12+2012=2024\)
Dấu "=" xảy ra khi
\(\left\{{}\begin{matrix}\left(y-2\right)^2=0\\3y=\dfrac{12}{y}\end{matrix}\right.\Rightarrow y=2}\)
\(P=3\left(x+\dfrac{9}{x}\right)+\left(y+\dfrac{16}{y}\right)+\left(x+y\right)\)
\(P\ge3.2\sqrt{\dfrac{9x}{x}}+2\sqrt{\dfrac{16y}{y}}+7=33\)
\(P_{min}=33\) khi \(\left(x;y\right)=\left(3;4\right)\)
đây là những món quà mà bn sẽ nhận đc: 1: áo quần 2: tiền 3: đc nhiều người yêu quý 4: may mắn cả 5: luôn vui vẻ trong cuộc sống 6: đc crush thích thầm 7: học giỏi 8: trở nên xinh đẹp phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người,