K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 1 2019

\(T=\dfrac{x}{\sqrt{y}}+\dfrac{y}{\sqrt{x}}=\dfrac{x^2}{x\sqrt{y}}+\dfrac{y^2}{y\sqrt{x}}\ge\dfrac{\left(x+y\right)^2}{x\sqrt{y}+y\sqrt{x}}=\dfrac{1}{x\sqrt{y}+y\sqrt{x}}\)

\(\Rightarrow T\ge\dfrac{1}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}\ge\dfrac{1}{\dfrac{\left(x+y\right)}{2}.\sqrt{2\left(x+y\right)}}=\sqrt{2}\)

\(\Rightarrow T_{min}=\sqrt{2}\) khi \(x=y=\dfrac{1}{2}\)

AH
Akai Haruma
Giáo viên
26 tháng 1 2018

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\geq \frac{(x+y+z)^2}{x+y+y+z+z+x}\)

\(\Leftrightarrow A\geq \frac{x+y+z}{2}\)

Áp dụng BĐT AM-GM:

\(\left\{\begin{matrix} x+y\geq 2\sqrt{xy}\\ y+z\geq 2\sqrt{yz}\\ z+x\geq 2\sqrt{zx}\end{matrix}\right.\)

\(\Rightarrow 2(x+y+z)\geq 2(\sqrt{xy}+\sqrt{yz}+\sqrt{zx})=2\)

\(\Rightarrow x+y+z\geq 1\)

Do đó: \(A\geq \frac{x+y+z}{2}\geq \frac{1}{2}\)

Vậy \(A_{\min}=\frac{1}{2}\)

Dấu bằng xảy ra khi \(x=y=z=\frac{1}{3}\)

NV
22 tháng 2 2019

\(\sqrt{x\left(1-x\right)}\le\dfrac{1}{2}\left(x+1-x\right)=\dfrac{1}{2}\Rightarrow\sqrt{1-x}\le\dfrac{1}{2\sqrt{x}}\)

\(\Rightarrow\dfrac{1}{\sqrt{1-x}}\ge2\sqrt{x}\Rightarrow\dfrac{x}{\sqrt{1-x}}\ge2x\sqrt{x}\)

\(\Rightarrow P\ge2x\sqrt{x}+2y\sqrt{y}\ge2\sqrt{\left(x^2+y^2\right)\left(\sqrt{x}^2+\sqrt{y}^2\right)}\ge2\sqrt{\dfrac{\left(x+y\right)^2}{2}\left(x+y\right)}=\sqrt{2}\)

\(\Rightarrow P_{min}=\sqrt{2}\) khi \(x=y=\dfrac{1}{2}\)

27 tháng 5 2018

x>0

y=[√x.(√x+1).(x-√x+1)]/(x-√x+1)-1-[√x.(2√x+1)]

=√x.(√x+1)-2√x-2

=x-√x-2

b.

y=(√x-1/2)^2-9/4≥-9/4

x=1/4

c.

x≥4=>(√x-1/2)^2≥9/4=>y≥0

=>y≥0=>|y|=y

=>y-|y|=y-y=0

27 tháng 5 2018

bạn có thể nào trình bày chi tiết bài làm không

4 tháng 2 2019

Áp dụng BĐT Minicopski ta có:

\(T=\sqrt{x^4+\frac{1}{x^4}}+\sqrt{y^2+\frac{1}{y^2}}\ge\sqrt{\left(x^2+y\right)^2+\left(\frac{1}{x^2}+\frac{1}{y}\right)^2}\)

\(\ge\sqrt{1^2+\left(\frac{4}{x^2+y}\right)^2}=\sqrt{1+\left(\frac{4}{1}\right)^2}=\sqrt{17}\)

Nên GTNN của T là \(\sqrt{17}\) khi \(\hept{\begin{cases}x=\sqrt{\frac{1}{2}}\\y=\frac{1}{2}\end{cases}}\)

22 tháng 2 2019

giải đi ?

22 tháng 2 2019

Áp dụng bất đẳng thức Cô-si ta có : 

\(P=\frac{x}{\sqrt{1-x}}+\frac{y}{\sqrt{1-y}}=\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{x}}\)

                                                       \(=\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{xy}}=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{xy}}\)

                                                                                            \(\ge\frac{2\sqrt{\sqrt{x}.\sqrt{y}}\left(x+y-\frac{x+y}{2}\right)}{\sqrt{xy}}\)

                                                                                            \(=\frac{x+y}{\sqrt[4]{xy}}\ge\frac{x+y}{\sqrt{\frac{x+y}{2}}}=\frac{1}{\sqrt{\frac{1}{2}}}=\sqrt{2}\)

Dấu "=" khi x = y = 1/2

29 tháng 1 2022

\(P=\dfrac{x}{\sqrt{x+y-x}}+\dfrac{y}{\sqrt{x+y-y}}=\dfrac{x}{\sqrt{y}}+\dfrac{y}{\sqrt{x}}\)

\(=\dfrac{x^2}{x\sqrt{y}}+\dfrac{y^2}{y\sqrt{x}}\ge\dfrac{\left(x+y\right)^2}{x\sqrt{y}+y\sqrt{x}}=\dfrac{\left(x+y\right)^2}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}\)

\(\ge\dfrac{\left(x+y\right)^2}{\dfrac{x+y}{2}.\left(1.\sqrt{x}+1.\sqrt{y}\right)}\ge\dfrac{\left(x+y\right)^2}{\dfrac{x+y}{2}.\sqrt{\left(1^2+1^2\right)\left(x+y\right)}}=\dfrac{1}{\dfrac{1}{2}\sqrt{2}}=\sqrt{2}\)

"=" khi x = y = 1/2

29 tháng 1 2022

giúp mình voi ah

 

2 tháng 6 2018

Y=\(\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-1-\dfrac{2x+\sqrt{x}}{\sqrt{x}}\)

=\(\dfrac{\sqrt{x}\left(\sqrt{x^3}+1\right)}{x-\sqrt{x}+1}\)-1-\(\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}\)

=\(\sqrt{x}\left(\sqrt{x}+1\right)\)-1-(\(2\sqrt{x}+1\))

=2\(\sqrt{x}+\sqrt{x}\)-1-2\(\sqrt{x}\)-1

=\(\sqrt{x}-2\)

2 tháng 6 2018

í m nhân lôn òi. là x-2\(\sqrt{x}\)-2

NV
4 tháng 6 2019

\(xy+xz+yz=6xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=6\)

Đặt \(\left\{{}\begin{matrix}\frac{1}{x}=a\\\frac{1}{y}=b\\\frac{1}{z}=c\end{matrix}\right.\) \(\Rightarrow a+b+c=6\)

\(T=\sum x\sqrt{\frac{x}{1+x^3}}=\sum\sqrt{\frac{x^3}{1+x^3}}=\sum\sqrt{\frac{1}{1+\frac{1}{x^3}}}=\sum\frac{1}{\sqrt{1+a^3}}=\sum\frac{1}{\sqrt{\left(a+1\right)\left(a^2-a+1\right)}}\)

\(\Rightarrow T\ge\sum\frac{2}{a+1+a^2-a+1}=\sum\frac{2}{a^2+2}\)

Ta có đánh giá: \(\frac{2}{a^2+2}\ge\frac{7-2a}{9}\) với mọi \(0< a< 6\)

Thật vậy, \(\frac{2}{a^2+2}\ge\frac{7-2a}{9}\Leftrightarrow18-\left(a^2+2\right)\left(7-2a\right)\ge0\)

\(\Leftrightarrow2a^3-7a^2+4a+4\ge0\)

\(\Leftrightarrow\left(a-2\right)^2\left(2a+1\right)\ge0\) luôn đúng với mọi \(0< a< 6\)

Tương tự ta có: \(\frac{2}{b^2+2}\ge\frac{7-2b}{9}\) ; \(\frac{2}{c^2+2}\ge\frac{7-2c}{9}\)

\(\Rightarrow T\ge\frac{21-2\left(a+b+c\right)}{9}=\frac{21-12}{9}=1\)

\(\Rightarrow T_{min}=1\) khi \(a=b=c=2\) hay \(x=y=z=\frac{1}{2}\)