Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt Cô-si \(1=x^2+y^2\ge2xy\)
\(\Rightarrow xy\le\frac{1}{2}\)
Ta có \(A=\frac{-2xy}{1+xy}\ge\frac{-\frac{2.1}{2}}{1+\frac{1}{2}}=-\frac{2}{3}\)
\("="\Leftrightarrow x=y=\frac{1}{\sqrt{2}}\)
\(A=2+x+y+\frac{1}{x}+\frac{1}{y}+\frac{x}{y}+\frac{y}{x}=2+\left(\frac{x}{y}+\frac{y}{x}\right)+\left(2x+\frac{1}{x}\right)+\left(2y+\frac{1}{y}\right)-\left(x+y\right)\)
Áp dụng cô-si cho từng cặp là ok,,,,
Riêng cặp cuối \(x+y\le\sqrt{2\left(x^2+y^2\right)}=\sqrt{2}\Leftrightarrow-\left(x+y\right)\ge-\sqrt{2}\)
a có:\(\frac{\left(x-y\right)^2}{xy}\ge0\forall x,y\)
\(\Leftrightarrow\frac{x^2+y^2-2xy}{xy}\ge0\)
\(\Leftrightarrow\frac{x}{y}+\frac{y}{x}-2\ge0\)
\(\Leftrightarrow\frac{x}{y}+\frac{y}{x}\ge2\left(1\right)\)
Áp dụng BĐT Cô-si vào các số dương \(\frac{x^2}{y^2},\frac{y^2}{x^2}\)ta có:
\(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge2\sqrt{\frac{x^2}{y^2}.\frac{y^2}{x^2}}=2\left(2\right)\)
Áp dụng BĐT \(\left(1\right),\left(2\right)\)ta được:
\(A=3\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)-8\left(\frac{x}{y}+\frac{y}{x}\right)\ge3.2-8.2=-10\)
Dấu '=' xảy ra khi \(x=y\)
Vậy \(A_{min}=-10\)khi \(x=y\)
\(M=9x^2-6x+1+x+\frac{1}{9x}+2019\)
\(M=\left(3x-1\right)^2+x+\frac{1}{9x}+2019\ge\left(3x-1\right)^2+\frac{2}{3}+2019\left(AM-GM\right)\)
\(MinM=\frac{6059}{3}\)
Đẳng thức xảy ra khi x=1/3
\(\sqrt{xy}\le\frac{x+y}{2}=\frac{2a}{2}=a\Rightarrow xy\le a^2\)
Ta có : \(A=\frac{x+y}{xy}\ge\frac{2a}{a^2}=\frac{a}{2}\)
Dấu "=" xảy ra khi x = y = a
vậy ....
\(Q=\frac{x^3}{4\left(y+2\right)}+\frac{y^3}{4\left(x+2\right)}=\frac{x^3\left(x+2\right)}{4\left(x+2\right)\left(y+2\right)}+\frac{y^3\left(y+2\right)}{4\left(x+2\right)\left(y+2\right)}\)
\(=\frac{x^4+y^4+2x^3+2y^3}{4\left(x+2\right)\left(y+2\right)}=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{4\left(xy+2x+2y+4\right)}\)
\(=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{4\left(2x+2y+8\right)}=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{8\left(x+y+4\right)}\)
Áp dụng bất đẳng thức AM-GM ta có :
\(x^4+y^4\ge2\sqrt{x^4y^4}=2x^2y^2\)
\(x^2+y^2\ge2\sqrt{x^2y^2}=2xy\)
\(Q=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{8\left(x+y+4\right)}\ge\frac{2x^2y^2+2xy\left(x+y\right)}{8\left(x+y+4\right)}=\frac{2xy\left(xy+x+y\right)}{8\left(x+y+4\right)}=\frac{8\left(x+y+4\right)}{8\left(x+y+4\right)}=1\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x,y>0\\x=y\\xy=4\end{cases}}\Rightarrow x=y=2\)
Vậy GTNN của Q là 1 <=> x = y = 2
Or
\(Q-1=\frac{\left(x^2-y^2\right)^2+2\left(x+y\right)\left(x^2+y^2-8\right)}{4\left(x+2\right)\left(y+2\right)}\ge0\)*đúng do \(x^2+y^2\ge2xy=8\)*
Do đó \(Q\ge1\)
Đẳng thức xảy ra khi x = y = 2
\(x+y=2\Rightarrow y=2-x\)
\(P=2x^2-\left(2-x\right)^2-5x+\dfrac{1}{x}+2020=x^2-x+\dfrac{1}{x}+2016\)
\(P=x^2+1-x+\dfrac{1}{x}+2015\ge2x-x+\dfrac{1}{x}+2015\)
\(P\ge x+\dfrac{1}{x}+2015\ge2\sqrt{\dfrac{x}{x}}+2015=2017\)
Dấu "=" xảy ra khi \(x=y=1\)