K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2016

BĐT Bunnhiacopxki

Với mọi số a;b;x;y ta có:

\(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)

Dấu đẳng thức xảy ra \(\Leftrightarrow\frac{a}{x}=\frac{b}{y}\)

20 tháng 5 2016

Nguyễn Huy Thắng Sai tên BĐT

20 tháng 5 2016

(ax+by)\(^{^2}\)\(\le\) (\(a^2\)+\(b^2\))(\(x^2\)+\(y^2\))

<=> \(a^2\)\(x^2\)+2axby+\(b^2\)\(y^2\)\(\le\)\(a^2\)\(x^2\)+\(a^2\)\(y^2\)+\(b^2\)\(x^2\)+\(b^2\)\(y^2\)

<=> 2axby\(\le\)\(a^2\)\(y^2\)+\(b^2\)\(x^2\)

<=>\(a^2\)\(y^2\)-2aybx+\(b^2\)\(x^2\)\(\ge\)0

<=> \(\left(ay-bx\right)^2\)\(\ge\)0(luôn đúng)

dấu = xảy ra khi ay-bx=0 <=> ay=bx

 

20 tháng 5 2016

BDT Bunnhiacopxki

Với mọi số a;b;x;y ta có:

\(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)

dấu = xảy ra khi \(\Leftrightarrow\frac{a}{x}=\frac{b}{y}\)

 

16 tháng 8 2016

a) Ta có :

\(x^4-y^4=\left(x^2-y^2\right)\left(x^2+y^2\right)\)

\(=\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)\)

\(=\left(x+y\right)\left(x^3-x^2y+xy^2-y^3\right)\)

b) Ta có :

\(\left(a+b\right)^2=2\left(a^2+b^2\right)\)

\(\Rightarrow a^2+b^2+2ab=a^2+b^2+a^2+b^2\)

\(\Rightarrow a^2+b^2=2ab\)

\(\Rightarrow a^2+b^2-2ab=0\)

\(\Rightarrow\left(a-b\right)^2=0\)

\(\Rightarrow a-b=0\)

\(\Rightarrow a=b\)

Vậy ...

Ta có :

\(a^2=\left(x+y\right)^2=x^2+y^2+2xy=x^2+y^2+2b\)

\(\Rightarrow x^2+y^2=a^2-2b\)

\(a^4=\left(x+y\right)^4=x^4+C_4^1x^3y+C_4^2x^2y^2+C_4^3xy^3+y^4\)

\(\Rightarrow a^4=x^4+y^4+4x^3y+6x^2y^2+4xy^3\)

\(\Rightarrow a^4=x^4+y^4+2xy\left(2x^2+3xy+2y^2\right)\)

\(=x^4+y^4+2b\left[3b+2\left(x^2+y^2\right)\right]\)

\(=x^4+y^4+2b\left[3b+2\left(a^2-2b\right)\right]\)

\(=x^4+y^4+6b^2+4a^2b-8b\)

\(\Rightarrow x^4+y^4=a^4-\left(6b^2+4a^2b-8b\right)\)

\(=a^4-4a^2b-6b^2+8b\)

 

16 tháng 8 2016

cám ơn bạn nhiều nha