Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\left(1+x\right)\left(1+\frac{1}{y}\right)+\left(1+\frac{1}{x}\right)\left(1+y\right)=x+\frac{x}{y}+\frac{1}{y}+1+y+\frac{y}{x}+\frac{1}{x}+1\)
=\(\left(x+y+\frac{1}{x}+\frac{1}{y}\right)+\frac{x}{y}+\frac{y}{x}+2\)
mà x2+y2=1
=>2(x2+y2)>(=)(x+y)2
\(\Rightarrow x+y\le\sqrt{2}\)
áp dụng bất đẳng thức cô si ta có:
\(\left(x+y+\frac{1}{x}+\frac{1}{y}\right)+\frac{x}{y}+\frac{y}{x}+2\ge\left(x+y+\frac{4}{x+y}\right)+4\)
\(=\left[\left(x+y\right)+\frac{2}{x+y}+\frac{2}{x+y}\right]+4\ge2\sqrt{2}+\sqrt{2}+4=4+3\sqrt{2}\)
Đặt: \(VT=\frac{x^2}{y+2}+\frac{y^2}{z+2}+\frac{z^2}{x+2}\)
Theo BĐT Cauchy, ta có:
\(\frac{x^2}{y+2}+\frac{1}{9}\left(y+2\right)\ge\frac{2}{3}x\) và \(\frac{y^2}{z+2}+\frac{1}{9}\left(z+2\right)\ge\frac{2}{3}y\)và \(\frac{z^2}{x+2}+\frac{1}{9}\left(x+2\right)\ge\frac{2}{3}z\)
Cộng vế theo vế, ta có:
\(VT\ge\frac{2}{3}\left(x+y+z\right)-\frac{1}{9}\left(x+y+z+6\right)\)
\(\Leftrightarrow VT\ge\frac{5}{9}\left(x+y+z\right)-\frac{2}{3}\) ( 1 )
Theo BĐT Cauchy, ta chứng minh được:
@ \(x^2+y^2+z^2\ge xy+yz+zx\)
\(\Leftrightarrow3xyz\ge xy+yz+zx\Leftrightarrow3\ge\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\Leftrightarrow\frac{1}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}\ge\frac{1}{3}\)
@ \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\Leftrightarrow\left(x+y+z\right)\ge\frac{9}{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)}\ge\frac{9}{3}=3\) ( 2 )
Từ (1) và (2) \(\Leftrightarrow VT\ge\frac{5}{9}.3-\frac{2}{3}=1\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)( thỏa đề bài )
Đặt \(A=\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}\)
Ta có :\(A=\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}=\frac{xy}{x}+\frac{xy}{y}+\frac{2}{x+y}\)(Do \(xy=1\))
\(=x+y+\frac{2}{x+y}\)
\(=\frac{x+y}{2}+\frac{x+y}{2}+\frac{2}{x+y}\)
Đặt \(B=\frac{x+y}{2};C=\frac{x+y}{2}+\frac{2}{x+y}\)
\(\Rightarrow A=B+C\)
Do x,y>0 nên ta áp dụng bất đẳng thức Cauchy
\(\Rightarrow B=\frac{x+y}{2}\ge\sqrt{xy}=\sqrt{1}=1\)(1)
Ta có: \(x,y>0\Rightarrow x+y>0\)
Ta áp dụng bất đẳng thức \(\frac{a}{b}+\frac{b}{a}\ge2\) với hai số dương x+y và 2
\(\Rightarrow C=\frac{x+y}{2}+\frac{2}{x+y}\ge2\)(2)
Từ (1) và (2)\(\Rightarrow B+C=\frac{x+y}{2}+\frac{x+y}{2}+\frac{2}{x+y}\ge1+2\)
\(\Rightarrow A\ge3\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}\ge3\left(ĐPCM\right)\)
Theo đề bài ta có
\(1=x+y\ge2\sqrt{xy}\)
\(\Leftrightarrow xy\le\frac{1}{4}\)
\(A=\left(x+\frac{1}{y}\right)^2+\left(y+\frac{1}{x}\right)^2\)
\(=x^2+y^2+\frac{2y}{x}+\frac{2x}{y}+\frac{1}{x^2}+\frac{1}{y^2}\)
\(=\left(x^2+\frac{1}{16x^2}\right)+\left(y^2+\frac{1}{16y^2}\right)+2\left(\frac{x}{y}+\frac{y}{x}\right)+\frac{15}{16}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)\)
\(\ge\frac{1}{2}+\frac{1}{2}+4+\frac{15}{16}.\frac{2}{xy}\)
\(\ge5+\frac{15}{16}.\frac{2}{\frac{1}{4}}=\frac{25}{2}\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
Ta có:
y02 + ay0 + b = 0
\(\Leftrightarrow\)y04 = (ay0 + b)2
\(\le\)(a2 + b2)(y02 + 1)
\(\Rightarrow\)y04 - 1 < (a2 + b2)(y02 + 1)
\(\Rightarrow\)y02 - 1 < a2 + b2
\(\Rightarrow\)y02 < 1 + a2 + b2
3/ Dễ thấy \(0\le x,y,z\le1\)
Ta có:
x2 + y2 + z2 = x3 + y3 + z3
\(\Leftrightarrow\)x2(1 - x) + y2(1 - y) + z2(1 - z) = 0
Dấu = xảy ra khi (x, y, z) = (0,0,1) và các hoán vị của nó
P=(2x+1/x)+(2y+1/y)-(x+y)+(x/y+y/x)+2
+có (x+y)^2 </ 2(x^2+y^2)(C-S) => x+y </ 2 => -(x+y) >/ căn (2)
+am-gm 3 lần
(*) CM BĐT : \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\) ( biến đổi tương đương là được )
Áp dụng :
\(2\left[\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\right]\ge\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2\)
TA có : \(x+\frac{1}{x}+y+\frac{1}{y}=4x+\frac{1}{x}+4y+\frac{1}{y}-3\left(x+y\right)\)
\(\ge4+4-3=5\) ( theo cô - si )
=> 2\(2\left[\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\right]\ge25\) => ĐPCM
Dấu '' = '' xảy ra khi x = y= 0,5