Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thắng nên hạn chế dùng kiến thức lớp trên để giải bài lớp dưới vì thầy giáo sẽ không chấp nhận cách giải đo.
Từ bước \(P=\frac{t^2-t-3}{t^2+t+1}\) mình đề xuất sử dụng tam thức để giải
\(\Rightarrow t^2\left(P-1\right)+t\left(P+1\right)+P+3=0\)
Để PT có nghiệm thì
\(\Delta=\left(P+1\right)^2-4\left(P-1\right)\left(P+3\right)\ge0\)
\(\Leftrightarrow-3P^2-6P+13\ge0\)
\(\Leftrightarrow\frac{-4\sqrt{3}-3}{3}\le P\le\frac{4\sqrt{3}-3}{3}\)
*)Với \(y=0\) ta dễ thấy ĐPCM
*)Với \(y=0\) thì:
Đặt \(P=\frac{x^2-xy-3y^2}{x^2+xy+y^2}=\frac{\left(\frac{x}{y}\right)^2-\frac{x}{y}-3}{\left(\frac{x}{y}\right)^2+\frac{x}{y}+1}\)
Đặt \(t=\frac{x}{y}\) thì \(P=\frac{t^2-t-3}{t^2+t+1}\).Xét \(f\left(t\right)=\frac{t^2-t-3}{t^2+t+1}\)
\(f'\left(t\right)=\frac{2\left(t^2+4y+1\right)}{\left(t^2+t+1\right)^2};f'\left(t\right)=0\Leftrightarrow\orbr{\begin{cases}t=-2-\sqrt{3}\\t=-2+\sqrt{3}\end{cases}}\)
Dựa vào bảng biến thiên: Max\(f\left(t\right)=f\left(-2-\sqrt{3}\right)=\frac{4\sqrt{3}-3}{3}\)
Min\(f\left(t\right)=f\left(-2+\sqrt{3}\right)=\frac{-4\sqrt{3}-3}{3}\)
Suy ra \(\frac{-4\sqrt{3}-3}{3}\le P\le\frac{4\sqrt{3}-3}{3}\)
\(\frac{-4\sqrt{3}-3}{3}\le\frac{x^2-xy-3y^2}{x^2+xy+y^2}\le\frac{4\sqrt{3}-3}{3}\)
Lại có: \(x^2+xy+y^2\le3\) nên \(-4\sqrt{3}-3\le x^2-xy-3y^2\le4\sqrt{3}-3\)
a/ \(\frac{1}{1+x}+\frac{1}{1+y}\le\frac{2}{1+\sqrt{xy}}\)
\(\Leftrightarrow\left(1+x\right)\left(1+\sqrt{xy}\right)+\left(1+y\right)\left(1+\sqrt{xy}\right)-2\left(1+x\right)\left(1+y\right)\le0\)
\(\Leftrightarrow x\sqrt{xy}+2\sqrt{xy}+y\sqrt{xy}-x-y-2xy\le0\)
\(\Leftrightarrow\sqrt{xy}\left(x-2\sqrt{xy}+y\right)-\left(x-2\sqrt{xy}+y\right)\le0\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2\left(\sqrt{xy}-1\right)\le0\) đúng vì \(x,y\le1\)
b/ Vì \(\hept{\begin{cases}0\le x\le y\le z\le t\\yt\le1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}xz\le1\\yt\le1\end{cases}}\)
Áp dụng câu a ta được
\(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}+\frac{1}{1+t}\le\frac{2}{1+\sqrt{xz}}+\frac{2}{1+\sqrt{yt}}\le\frac{4}{1+\sqrt[4]{xyzt}}\)
Đặt \(\left(x,y,z\right)\rightarrow\left(a,b,c\right)\) (chẳng có lý do j đâu mình gõ a,b,c quen hơn thôi)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(3P=\frac{3\sqrt{ab}}{c+3\sqrt{bc}}+\frac{3\sqrt{bc}}{a+3\sqrt{bc}}+\frac{3\sqrt{ca}}{b+3\sqrt{ca}}\)
\(=3-\left(\frac{a}{a+3\sqrt{bc}}+\frac{b}{b+3\sqrt{ca}}+\frac{c}{c+3\sqrt{ab}}\right)\)
\(\le3-\left[\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3\sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}\right]\)
\(\le3-\left[\frac{\left(a+b+c\right)^2}{\left(a^2+b^2+c^2\right)+3\left(ab+bc+ca\right)}\right]\)
\(\le3-\left[\frac{\left(a+b+c\right)^2}{\left(a^2+b^2+c^2\right)+\frac{\left(a+b+c\right)^2}{3}}\right]=3-\frac{9}{4}=\frac{3}{4}\)
Xảy ra khi \(a=b=c\)
Mình cũng chịu bạn ạ vì mình mới học lớp 5 thôi
k mình nha
Chúc bạn học giỏi
Mình cảm ơn bạn nhiều
At the speed of light hữu ích thật.
Giải:
Đặt \(S=x+y+z\). Ta có: \(S^{2^{B.C.S}}=3.x^2+y^2+z^2\)
\(\Rightarrow4\ge3.x^2+y^2+z^2-3.x+y+z\ge S^2-3S\Rightarrow S+1.S-4\le4\Rightarrow-1\le S\le4\)
x=1;y=2