K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2019

Đặt \(x=\sqrt{10}sin^2a\)\(y=\sqrt{10}cos^2a\)

(Lúc đó: \(x+y=\sqrt{10}\left(sin^2a+cos^2a\right)=\sqrt{10}\))

Lúc đó: \(K=\left(1+100sin^8a\right)\left(1+100cos^8a\right)\)

\(=10^4sin^8acos^8a+200sin^4acos^4a-400sin^2acos^2a+101\)

Đặt \(sin^2acos^2a=l\)

\(\Rightarrow K=f\left(l\right)=10^4l^4+200l^2-400l+101\)

\(\Rightarrow K_{min}=f\left(\frac{1}{5}\right)=45\)

23 tháng 9 2019

Tìm GTLN và GTNN của biểu thức $A=(x^{4}+1)(y^{4}+1)$ - Bất đẳng thức và cực trị - Diễn đàn Toán học

22 tháng 9 2019

CÁI NÀY mk lm rồi

22 tháng 9 2019

x^2+2xy+y^2=10

x^2+y^2=10-2xy

26 tháng 7 2016

bài này dễ ẹt ak 

nhưng giúp mình bài này đi 

chotam giac abc . co canh bc=12cm, duong cao ah=8cm

a> tinh s tam giac abc

b> tren canh bc lay diem e sao cho be=3/4bc. tinh s tam giac abe va s tam giac ace ( bằng nhiều cách )

c> lay diem chinh giua cua canh ac va m . tinh s tam giac ame

27 tháng 6 2020

Ta dễ dàng nhận thấy : 

\(\left(\frac{x+1}{y}\right)^2\ge0\)

\(\left(\frac{y+1}{x}\right)^2\ge0\)

Cộng theo vế ta được : 

\(\left(\frac{x+1}{y}\right)^2+\left(\frac{y+1}{x}\right)^2\ge0\)

Dấu = xảy ra khi và chỉ khi \(x=y=-1\)

Vậy \(Min_S=0\)khi \(x=y=-1\)

27 tháng 6 2020

dcv_new : sai rồi nhé 
\(S=x^2+\frac{1}{y^2}+\frac{2x}{y}+y^2+\frac{1}{x^2}+\frac{2y}{x}\)

\(\ge4+\frac{4}{x^2+y^2}+2\left(\frac{x}{y}+\frac{y}{x}\right)\)

\(=5+4=9\)

Đẳng thức xảy ra tại x=y=\(\sqrt{2}\)

30 tháng 5 2020

A = \(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(=\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}=\frac{1}{2}\left[\left(x+y\right)+\left(\frac{1}{x}+\frac{1}{y}\right)\right]^2\)

\(\ge\frac{1}{2}\left[\left(x+y\right)+\frac{4}{x+y}\right]^2=\frac{1}{2}\left(1+4\right)^2=\frac{25}{2}\)

Dấu "=" xảy ra <=> x = y =1/2

Vậy GTNN của A = 25/2 tại x = y = 1/2

1 tháng 6 2020

Ta có :

\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(=x^2+\frac{1}{x^2}+2+y^2+\frac{1}{y^2}+2\)

\(=4+\left(x^2+y^2\right)+\left(\frac{1}{x^2}+\frac{1}{y^2}\right)\)

\(\ge4+\frac{\left(x+y\right)^2}{2}+2\sqrt{\frac{1}{\left(xy\right)^2}}\)

\(=4+\frac{1}{2}+\frac{2}{xy}\ge4+\frac{1}{2}+\frac{2}{\frac{\left(x+y\right)^2}{4}}=4+\frac{1}{2}+8=\frac{25}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

Vậy \(A_{min}=\frac{25}{2}\) tại \(x=y=\frac{1}{2}\)