Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}\le0\)(1)
Vì \(\left(\frac{1}{3}-2x\right)^{2018}\ge0\forall x\); \(\left(3y-x\right)^{2020}\ge0\forall x,y\)
\(\Rightarrow\left(\frac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}\ge0\forall x,y\)(2)
Từ (1), (2) \(\Rightarrow\left(\frac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}=0\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{3}-2x=0\\3y-x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{6}\\y=\frac{1}{18}\end{cases}}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}=6+18=24\left(đpcm\right)\)
Ta có: \(\left(\dfrac{1}{3}-2x\right)^{2018}\ge0\forall x\);
\(\left(3y-x\right)^{2020}\ge0\forall x;y\)
=> \(\left(\dfrac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}\ge0\)
mà theo đề thì:\(\left(\dfrac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}\le0\)
=> Dấu ''='' xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}\dfrac{1}{3}-2x=0\\3y-x=0\end{matrix}\right.\)
Ta có: \(\dfrac{1}{3}-2x=0\Rightarrow x=\dfrac{1}{6}\);
\(3y-x=0\Leftrightarrow3y-\dfrac{1}{6}=0\Leftrightarrow3y=\dfrac{1}{6}\Leftrightarrow y=\dfrac{1}{18}\)
=> \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{\dfrac{1}{6}}+\dfrac{1}{\dfrac{1}{18}}=6+18=24\left(đpcm\right)\)
Nhận xét : ( x + y - 3 )^2018 >=0 và 2018.(2x-4)^2020 >= 0
=> (x+y-3)^2018 + 2018.(2x-4)^2020 >=0
Dấu = xảy ra khi : x + y - 3 = 0 và 2x - 4 = 0 => x = 2 và y = 1
Thay vào bt S :
S = ( 2 - 1)^2019 + (2-1)^2019
= 1^2019 + 1^2019 = 2
(1/3 -2x)^2018 + (3y-x)^2020 <=0
Mà (1/3 -2x) ^ 2018 >= 0 với mọi x ( vì số mũ chẵn)
(3y-x) ^ 2020 >= 0 với mọi x,y ( vì số mũ chẵn)
=> 1/3 - 2x =0 và 3y-x=0
+) 1/3 -2x =0
=> 2x= 1/3 -0 = 1/3
=> x= 1/3 : 2 =1/6
+) 3y-x =0
=> 3y - 1/6 = 0 (vì x = 1/6)
=> 3y = 1/6
=> y = 1/6 : 3 = 1/18
Có 1/x + 1/y = 1 : (1/6) + 1: (1/18) = 6+18 =24 (đpcm)