Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^4\left(y-z\right)+y^4\left(z-x\right)+z^4\left(x-y\right)\)
\(=x^4y-x^4z+y^4z-y^4x+z^4\left(x-y\right)\)
\(=xy\left(x^3-y^3\right)-z\left(x^4-y^4\right)+z^4\left(x-y\right)\)
\(=xy\left(x-y\right)\left(x^2+xy+y^2\right)-z\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)+z^4\left(x-y\right)\)
\(=\left(x-y\right)\left[xy\left(x^2+xy+y^2\right)-z\left(x^3+x^2y+xy^2+y^3\right)+z^4\right]\)
\(=\left(x-y\right)\left(x^3y+x^2y^2+xy^3-x^3z-x^2yz-xy^2z-y^3z+z^4\right)\)
\(=\left(x-y\right)\left[x^3\left(y-z\right)+x^2y\left(y-z\right)+xy^2\left(y-z\right)-z\left(y^3-z^3\right)\right]\)
\(=\left(x-y\right)\left[x^3\left(y-z\right)+x^2y\left(y-z\right)+xy^2\left(y-z\right)-z\left(y-z\right)\left(y^2+yz+z^2\right)\right]\)
\(=\left(x-y\right)\left(y-z\right)\left[x^3+x^2y+xy^2-z\left(y^2+yz+z^2\right)\right]\)
\(=\left(x-y\right)\left(y-z\right)\left(x^3+x^2y+xy^2-y^2z-yz^2-z^3\right)\)
\(=\left(x-y\right)\left(y-z\right)\left[x^3-z^3+y\left(x^2-z^2\right)+y^2\left(x-z\right)\right]\)
\(=\left(x-y\right)\left(y-z\right)\left[\left(x-z\right)\left(x^2+xz+z^2\right)+y\left(x-z\right)\left(x+z\right)+y^2\left(x-z\right)\right]\)
\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\left[x^2+xz+z^2+y\left(x+z\right)+y^2\right]\)
\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\frac{2\left(x^2+xz+z^2+xy+yz+y^2\right)}{2}\)
\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\frac{x^2+2xz+z^2+x^2+xy+y^2+y^2+yz+z^2}{2}\)
\(\left(x-y\right)\left(y-z\right)\left(x-z\right)\frac{\left(x+z\right)^2+\left(x+y\right)^2+\left(y+z\right)^2}{2}\)
\(Ta\)\(có\)\(x>y>z\Rightarrow\left(x-y\right);\left(y-z\right);\left(x-z\right)>0\)
\(\left(x+z\right)^2;\left(y+z\right)^2;\left(x+y\right)^2\ge0\)
\(\Rightarrow A>o\Rightarrow A\)\(luôn\)\(dương\)
Sửa đề z^4(z-y) thành z^4(x-y)
Đặt \(A=x^4\left(y-z\right)+y^4\left(z-x\right)+z^4\left(x-y\right)\)
\(=x^4\left(y-x+x-z\right)+y^4\left(z-x\right)+z^4\left(x-y\right)\)
\(=-x^4\left(x-y\right)+x^4\left(x-z\right)-y^4\left(x-z\right)+z^4\left(x-y\right)\)
\(=\left(x-y\right)\left(z^4-x^4\right)+\left(x-z\right)\left(x^4-y^4\right)\)
\(=\left(x-y\right)\left(z^2+x^2\right)\left(z^2-x^2\right)+\left(x-z\right)\left(x^2+y^2\right)\left(x^2-y^2\right)\)
\(=\left(x-y\right)\left(z^2+x^2\right)\left(x+z\right)\left(z-x\right)+\left(x-z\right)\left(x^2+y^2\right)\left(x+y\right)\left(x-y\right)\)
\(=\left(x-y\right)\left(z-x\right)\left[\left(z^2+x^2\right)\left(x+z\right)-\left(x^2+y^2\right)\left(x+y\right)\right]\)
\(=\left(x-y\right)\left(z-x\right)\left(xz^2+z^3+x^3+x^2z-x^3-x^2y-xy^2-y^3\right)\)
\(=\left(x-y\right)\left(z-x\right)\left[x^2\left(z-y\right)+x\left(z^2-y^2\right)+\left(z^3-y^3\right)\right]\)
\(=\left(x-y\right)\left(z-x\right)\left(z-y\right)\left[x^2+x\left(z+y\right)+\left(z^2+yz+y^2\right)\right]\)
\(=\left(x-y\right)\left(x-z\right)\left(y-z\right)\left(x^2+xz+xy+z^2+yz+y^2\right)\)
\(=\frac{1}{2}\left(x-y\right)\left(x-z\right)\left(y-z\right)\left(2x^2+2y^2+2z^2+2xy+2yz+2xz\right)\)
\(=\frac{1}{2}\left(x-y\right)\left(x-z\right)\left(y-z\right)\left[\left(x+y\right)^2+\left(y+z\right)^2+\left(z+x\right)^2\right]\)
Vì \(x>y>z\Rightarrow\hept{\begin{cases}x-y>0\\x-z>0\\y-z>0\end{cases}}\) và \(\left(x+y\right)^2+\left(y+z\right)^2+\left(z+x\right)^2\ge0\)
=>....
Áp dụng BĐT cauchy schawrz dạng engel ta có:
\(\frac{\left(y+z\right)^2}{x}+\frac{\left(x+z\right)^2}{y}+\frac{\left(x+y\right)^2}{z}\ge\frac{\left(y+z+x+z+x+y\right)^2}{x+y+z}=\frac{4\left(x+y+z\right)^2}{x+y+z}=4\left(x+y+z\right)\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)
Áp dụng BĐT cauchy schawrz dạng engel, ta có:
\(\frac{\left(y+z\right)^2}{x}+\frac{\left(x+z\right)^2}{y}+\frac{\left(x+y\right)^2}{z}\ge\frac{\left(y+z+x+z+x+y\right)^2}{x+y+z}=\frac{4\left(x+y+z\right)^2}{x+y+z}=4\left(x+y+z\right)\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)
Áp dụng BĐT AM-GM ta có:
\(x+y+z\ge3\sqrt[3]{xyz}\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{xyz}}\)
Nhân theo vế 2 BĐT trên ta có:
\(VT\ge3^2\cdot\sqrt[3]{xyz\cdot\frac{1}{xyz}}=9=VP\)
Xảy ra khi \(a=b=c\)
Đặt: \(E=\frac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
Ta có: \(F-E=\frac{x^4-y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4-z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4-x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
\(=\left(x-y\right)+\left(y-z\right)+\left(z-x\right)=0\)
\(\Leftrightarrow F=E\)
Từ đó ta có:
\(2F=\frac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4+z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4+x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
\(\ge\frac{\left(x^2+y^2\right)^2}{2\left(x^2+y^2\right)\left(x+y\right)}+\frac{\left(y^2+z^2\right)^2}{2\left(y^2+z^2\right)\left(y+z\right)}+\frac{\left(z^2+x^2\right)^2}{2\left(z^2+x^2\right)\left(z+x\right)}\)
\(=\frac{\left(x^2+y^2\right)}{2\left(x+y\right)}+\frac{\left(y^2+z^2\right)}{2\left(y+z\right)}+\frac{\left(z^2+x^2\right)}{2\left(z+x\right)}\)
\(\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)}+\frac{\left(y+z\right)^2}{4\left(y+z\right)}+\frac{\left(z+x\right)^2}{4\left(z+x\right)}\)
\(=\frac{x+y}{4}+\frac{y+z}{4}+\frac{z+x}{4}=\frac{1}{2}\)
\(\Rightarrow F\ge\frac{1}{4}\)
Dấu = xảy ra khi \(x=y=z=\frac{1}{3}\)
Bạn ơi, cho mình hỏi này
Sao có \(\frac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}\ge\frac{\left(x^2+y^2\right)^2}{2\left(x^2+y^2\right)\left(x+y\right)}\) và sao có \(\frac{\left(x^2+y^2\right)}{2}\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)}\)
Giải đáp tận tình hộ mình nhé.
\(A=x^4\left(y-z\right)+y^4\left(z-x\right)+z^4\left(x-y\right)\)
\(A=x^4\left(y-z\right)+y^4\left(z-x\right)-z^4\left[\left(y-z\right)+\left(z-x\right)\right]\)
\(A=x^4\left(y-z\right)-z^4\left(y-z\right)+y^4\left(z-x\right)-z^4\left(z-x\right)\)
\(A=\left(y-z\right)\left(x^4-z^4\right)+\left(z-x\right)\left(y^4-z^4\right)\)
\(A=\left(y-z\right)\left(x-z\right)\left(x+z\right)\left(x^2+z^2\right)-\left(x-z\right)\left(y-z\right)\left(y+z\right)\left(y^2+z^2\right)\)
\(A=\left(y-z\right)\left(x-z\right)\left(x^3+xz^2+x^2z+z^3-y^3-yz^2-y^2z-z^3\right)\)
\(A=\left(y-z\right)\left(x-z\right)\left(x-y\right)\left(x^2+xy+y^2+z^2+zx+yz\right)\)
\(A=\frac{1}{2}\left(x-y\right)\left(y-z\right)\left(x-z\right)\left[\left(x+y\right)^2+\left(y+z\right)^2+\left(z+x\right)^2\right]\)
Vì \(x>y>z\Rightarrow A>0\)