K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2017

PP : biến đổi tương đương

Bài làm

Ta có \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)

\(\Leftrightarrow\dfrac{y+x}{xy}\ge\dfrac{4}{x+y}\)

\(\Leftrightarrow\dfrac{\left(x+y\right)\left(y+x\right)}{xy\left(x+y\right)}\ge\dfrac{4xy}{\left(x+y\right)xy}\)

Vì x , y >0 , ta suy ra (x+y)2 \(\ge\)4xy

\(\Leftrightarrow\left(x+y\right)^2-4xy\ge0\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

Hay (x-y)2 \(\ge\)0 ( điều này luôn đúng )

Vậy..........

20 tháng 3 2017

còn gọi là phương pháp phản chứng

AH
Akai Haruma
Giáo viên
27 tháng 2 2019

Lời giải:

Xét hiệu \((x+y)\left(\frac{1}{x}+\frac{1}{y}\right)-4=\left(1+\frac{x}{y}+\frac{y}{x}+1\right)-4\)

\(=\frac{x}{y}+\frac{y}{x}-2=\frac{x^2+y^2}{xy}-2=\frac{x^2+y^2-2xy}{xy}=\frac{(x-y)^2}{xy}\geq 0, \forall x,y>0\)

Do đó \((x+y)\left(\frac{1}{x}+\frac{1}{y}\right)\geq 4\) (đpcm)

Dấu "=" xảy ra khi \((x-y)^2=0\Leftrightarrow x=y\)

5 tháng 4 2018

Áp dụng bất đẳng thức AM-GM:

\(\dfrac{x^3}{x^2+y^2}=\dfrac{x\left(x^2+y^2\right)-xy^2}{x^2+y^2}=x-\dfrac{xy^2}{x^2+y^2}\ge x-\dfrac{xy^2}{2xy}=x-\dfrac{y}{2}\)

a: Thiếu vế phải rồi bạn

b: \(\Leftrightarrow\dfrac{x+y}{xy}>=\dfrac{4}{x+y}\)

\(\Leftrightarrow\left(x+y\right)^2>=4xy\)

\(\Leftrightarrow\left(x-y\right)^2>=0\)(luôn đúng)

30 tháng 3 2018

1) 2( a2 + b2 ) ≥ ( a + b)2

<=> 2a2 + 2b2 - a2 - 2ab - b2 ≥ 0

<=> a2 - 2ab + b2 ≥ 0

<=> ( a - b )2 ≥ 0 ( luôn đúng )

=> đpcm

2) Áp dụng BĐT Cô-si cho 2 số dương x , y , ta có :

a + b ≥ \(2\sqrt{ab}\)

=> \(\dfrac{1}{x}+\dfrac{1}{y}\) ≥ 2\(\sqrt{\dfrac{1}{x}.\dfrac{1}{y}}\)

=> ( x + y)( \(\dfrac{1}{x}+\dfrac{1}{y}\) ) ≥ \(2\sqrt{xy}\)2\(\sqrt{\dfrac{1}{x}.\dfrac{1}{y}}\)

=> ( x + y)( \(\dfrac{1}{x}+\dfrac{1}{y}\)) ≥ 4

=> \(\dfrac{1}{x}+\dfrac{1}{y}\)\(\dfrac{4}{x+y}\)

NV
13 tháng 4 2020

\(x^8+x^8+y^8+y^8+y^8+z^8+z^8+z^8\ge8\sqrt[8]{x^{16}y^{24}z^{24}}=8x^2y^3z^3\)

Tương tự: \(3x^8+2y^8+3z^8\ge8x^3y^2z^3\)

\(3x^8+3y^8+2z^8\ge8x^3y^3z^2\)

Cộng vế với vế:

\(8\left(x^8+y^8+z^8\right)\ge8\left(x^2y^3z^3+x^3y^2z^3+x^3y^3z^2\right)\)

\(\Leftrightarrow\frac{x^8+y^8+z^8}{x^3y^3z^3}\ge\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

Dấu "=" xảy ra khi \(x=y=z\)

1 tháng 11 2017

BĐT đã cho tương đương với

\(\dfrac{x+y}{xy}\ge\dfrac{4}{x+y}\)

\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow x^2+2xy+y^2-4xy\ge0\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\)(Luôn đúng)

Vậy: BĐT cần c/m đúng

14 tháng 9 2017

Khó quá. Đúng là Câu Hỏi Hay!!

a)Áp dụng BĐT AM-GM ta có:

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)

Nhân theo vế 2 BĐT trên có:

\(A\ge9\sqrt[3]{abc\cdot\dfrac{1}{abc}}=9\)

Khi \(a=b=c\)

Bài 2:

a)Sửa đề \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT=\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{\left(1+1\right)^2}{x+y}=\dfrac{4}{x+y}\)

Khi \(x=y\)

b)Áp dụng BĐT \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) ta có:

\(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}\ge\dfrac{4}{a+b-c+b+c-a}=\dfrac{4}{2b}=\dfrac{2}{b}\)

Tương tự cho 2 BĐT còn lại cũng có:

\(\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\ge\dfrac{2}{c};\dfrac{1}{c+a-b}+\dfrac{1}{a+b-c}\ge\dfrac{2}{a}\)

Cộng theo vế 3 BĐT trên ta có:

\(2VT\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=2VP\Leftrightarrow VT\ge VP\)

Khi \(a=b=c\)

14 tháng 9 2017

Câu 1: Với \(a;b;c>0\), theo bất đẳng thức Cauchy:

\(a+b+c\ge3.\sqrt[3]{abc}\). Dấu "=" xảy ra khi \(a=b=c\)

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3.\sqrt[3]{\dfrac{1}{abc}}\). Dấu "=" xảy ra khi \(\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}\)

Nhân theo vế ta được \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)

\(\Rightarrow MinA=9\)

Dấu "=" xảy ra khi a = b = c

4 tháng 8 2018

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\) ( sửa đề )

\(\Leftrightarrow\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge9\)

\(\Leftrightarrow3+\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{x}{z}+\dfrac{z}{x}\ge9\)

Ta sẽ CM BĐT trên đúng bằng sử dụng Cô - Si , ta có :

\(\left\{{}\begin{matrix}\dfrac{x}{y}+\dfrac{y}{x}\ge2\sqrt{\dfrac{x}{y}.\dfrac{y}{x}}=2\\\dfrac{y}{z}+\dfrac{z}{y}\ge2\sqrt{\dfrac{y}{z}.\dfrac{z}{y}}=2\\\dfrac{x}{z}+\dfrac{z}{x}\ge2\sqrt{\dfrac{x}{z}.\dfrac{z}{x}}=2\end{matrix}\right.\)

\(\Rightarrow\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{x}{z}+\dfrac{z}{x}\ge6\)

\(\Leftrightarrow3+\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{x}{z}+\dfrac{z}{x}\ge9\)

\(\Rightarrowđpcm.\)

\("="\Leftrightarrow x=y=z\)

4 tháng 8 2018

Sửa đề như Linh :3

Áp dụng BĐT Cauchy - Schwarz, ta có:

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{\left(1+1+1\right)^2}{x+y+z}=\dfrac{3^2}{x+y+z}=\dfrac{9}{x+y+z}\)