\(x^{2009}-2008x^{2008}-2008x^{2007}-2008x+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2018

Có ai giúp mình làm ko?

26 tháng 8 2018

Lộn đề

\(A=x^{2009}-2008x^{2008}-2008x^{2007}-...-2008x+1\)1

28 tháng 8 2018

Trả lời lẹ đi 30p nữa thôi !

23 tháng 8 2018

\(x=2009\)

\(\Rightarrow x-1=2008\left(1\right)\)

Thay (1) vào A ta được:

\(A=x^{2009}-2008x^{2008}-2008x^{2007}-...-2008x+1\)

\(A=x^{2009}-\left(x-1\right)x^{2008}-...-\left(x-1\right)x+1\)

\(A=x^{2009}-x^{2009}+x^{2008}-...-x^2-x+1\)

\(A=-x+1\)

\(A=-2009+1\)

\(A=-2008\)

23 tháng 8 2018

em cảm ơn nhiều ạ

8 tháng 9 2021

x=2009x=2009

⇒x−1=2008(1)⇒x−1=2008(1)

Thay (1) vào A ta được:

A=x^2009−2008x^2008−2008x^2007−...−2008x+1

A=x^2009−(x−1)x^2008−...−(x−1)x+1

A=x^2009−x^2009+x^2008−...−x^2−x+1

A=−x+1

A=−2009+1

A=−2008

8 tháng 9 2021

\(x=2009\Leftrightarrow x-1=2008\\ \Leftrightarrow A=x^x-\left(x-1\right)x^{x-1}-\left(x-1\right)x^{x-2}-...-\left(x-1\right)x+1\\ \Leftrightarrow A=x^x-x^x+x^{x-1}-x^{x-1}+x^{x-2}-...-x^2-x+1\\ \Leftrightarrow A=1-x=1-2009=-2008\)

Đề sai rồi bạn

Nguyễn Lê Phước Thịnh CTV

chuyên toán 

20 tháng 2 2018

Để PT có nghiệm khi \(2009y^{2010}\) lẻ \(\Rightarrow y^{2010}\)lẻ Hay \(y\) lẻ

\(\Rightarrow y^2\equiv1\left(mod4\right)\)\(\Rightarrow2009y^{2010}\equiv1\left(mod4\right)\)

Mà \(2008x^{2009}\equiv0\left(mod4\right)\) nên \(2008x^{2009}+2009y^{2010}\equiv1\left(mod4\right)\)

Mà \(2011\equiv3\left(mod4\right)\) 

\(\Rightarrow2008x^{2009}+2009y^{2010}\ne2011\forall x;y\in Z\)

Vậy PT vô nghiệm nguyên

24 tháng 3 2019

a)\(x^8+2x^4+1-x^4=\left(x^4+1\right)^2-\left(x^2\right)^2\)

\(=\left(x^4+x^2+1\right)\left(x^4-x^2+1\right)\)

\(=\left(x^2-x+1\right)\left(x^2+x+1\right)\left(x^4-x^2+1\right)\)

24 tháng 3 2019

\(=\left(x^4+x^3+x^2\right)-\left(x^3-2007x^2-2007x-2008\right)\)

\(=x^2\left(x^2+x+1\right)-\left[x\left(x^2+x+1\right)-2008\left(x^2-x-1\right)\right]\)

\(=x^2\left(x^2+x+1\right)-\left(x^2+x+1\right)\left(x-2008\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2008\right)\)

11 tháng 10 2020

Câu 1:

a) \(2x^2+5x-3=\left(2x^2+6x\right)-\left(x+3\right)\)

\(=2x\left(x+3\right)-\left(x+3\right)=\left(x+3\right)\left(2x-1\right)\)

b) \(x^4+2009x^2+2008x+2009\)

\(=\left(x^4-x\right)+\left(2009x^2+2009x+2009\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)+2009\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2009\right)\)

c) \(\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]=-16\) (đã sửa đề)

\(\Leftrightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16=0\)

\(\Leftrightarrow\left(x^2+10x+20\right)^2-16+16=0\)

\(\Leftrightarrow\left(x^2+10x+20\right)^2=0\)

\(\Leftrightarrow\left(x+5\right)^2-5=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-5-\sqrt{5}\\x=-5+\sqrt{5}\end{cases}}\)

11 tháng 10 2020

Câu 1.

a) 2x2 + 5x - 3 = 2x2 + 6x - x - 3 = 2x( x + 3 ) - ( x + 3 ) = ( x + 3 )( 2x - 1 )

b) x4 + 2009x2 + 2008x + 2009 

= x4 + 2009x2 + 2009x - x + 2009 

= ( x4 - x ) + ( 2009x2 + 2009x + 2009 )

= x( x3 - 1 ) + 2009( x2 + x + 1 )

= x( x - 1 )( x2 + x + 1 ) + 2009( x2 + x + 1 )

= ( x2 + x + 1 )[ x( x - 1 ) + 2009 ]

= ( x2 + x + 1 )( x2 - x + 2009 )

c) ( x + 2 )( x + 4 )( x + 6 )( x + 8 ) = 16 ( xem lại đi chứ không phân tích được :v )

Câu 2. 

3x2 + x - 6 - √2 = 0

<=> ( 3x2 - 6 ) + ( x - √2 ) = 0

<=> 3( x2 - 2 ) + ( x - √2 ) = 0

<=> 3( x - √2 )( x + √2 ) + ( x - √2 ) = 0

<=> ( x - √2 )[ 3( x + √2 ) + 1 ] = 0

<=> \(\orbr{\begin{cases}x-\sqrt{2}=0\\3\left(x+\sqrt{2}\right)+1=0\end{cases}}\)

+) x - √2 = 0 => x = √2

+) 3( x + √2 ) + 1 = 0

<=> 3( x + √2 ) = -1

<=> x + √2 = -1/3

<=> x = -1/3 - √2

Vậy S = { √2 ; -1/3 - √2 }

Câu 3.

A = x( x + 1 )( x2 + x - 4 )

= ( x2 + x )( x2 + x - 4 )

Đặt t = x2 + x

A = t( t - 4 ) = t2 - 4t = ( t2 - 4t + 4 ) - 4 = ( t - 2 )2 - 4 ≥ -4 ∀ t

Dấu "=" xảy ra khi t = 2

=> x2 + x = 2

=> x2 + x - 2 = 0

=> x2 - x + 2x - 2 = 0

=> x( x - 1 ) + 2( x - 1 ) = 0

=> ( x - 1 )( x + 2 ) = 0

=> x = 1 hoặc x = -2

=> MinA = -4 <=> x = 1 hoặc x = -2

23 tháng 3 2019

\(x^8+x^4+1\)

\(=\left(x^4\right)^2+2.x^4+1-x^4\)

\(=\left(x^4+1\right)-\left(x^2\right)^2\)

\(=\left(x^4+1-x^2\right)\left(x^4+x^2+1\right)\)

\(=\left(x^4+1-x^2\right)\left[\left(x^2\right)^2+2x^2+1-x^2\right]\)

\(=\left(x^4+1-x^2\right)\left[\left(x^2+1^2\right)-x^2\right]\)

\(=\left(x^4+1-x^2\right)\left(x^2+x+1\right)\left(x^2-x+1\right)\)

\(x^4+2008x^2+2007x+2008\)

\(=\left(x^4-x\right)+2008\left(x^2+x+1\right)\)

\(=\left(x-1\right)\left(x^2+x+1\right)+2008\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x-1+2008\right)\)

\(=\left(x^2+x+1\right)\left(x+2007\right)\)

1 tháng 6 2021

a.\(x^2+7x+6\)

\(=x^2+x+6x+6\)

\(=x\left(x+1\right)+6\left(x+1\right)\)

\(=\left(x+1\right)\left(x+6\right)\)

Sửa đề:.\(x^4+2008x^2+2007x+2008\)

\(=x^4+x^2+1+2007x^2+2007x+2007\)

\(=\left(x^4+x^2+1\right)+2007\left(x^2+x+1\right)\)

\(=\left(x^4+x^3+x^2-x^3-x^2-x+x^2+x+1\right)+2007\left(x^2+x+1\right)\)

\(=\left[x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\right]+2007\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+1\right)+2007\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2008\right)\)

1 tháng 6 2021

Trả lời:

a, x2 + 7x + 6

= x2 + x + 6x + 6

= ( x2 + x ) + ( 6x + 6 )

= x ( x + 1 ) + 6 ( x + 1 )

= ( x + 6 ) ( x + 1 )