Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có
IH vuông góc AB => ^AHI = 90
IK vuông góc AD => ^AKI = 90
=> H và K cùng nhìn AI dưới hai góc bằng nhau => AHIK là tứ giác nội tiếp
b/ Xét tam giác ADI và tam giác BCI có
^AID=^BIC (góc đối đỉnh)
sđ ^DAC = sđ ^DBC = 1/2 sđ cung CD (góc nội tiếp) => ^DAC=^DBC
=> tg ADI đồng dạng tg BCI
=>\(\frac{IA}{IB}=\frac{ID}{IC}\)⇒IA.IC=IB.ID
c/
Xét tứ giác nội tiếp AHIK có
^HIK = 180 - ^DAB (hai góc đối của tứ giác nội tiếp bù nhau) (1)
^DAC = ^KHI (2 góc nội tiếp chắn cùng 1 cung) (2)
Xét tứ giác nội tiếp ABCD có
^BCD = 180 - ^DAB (hai góc đối của tứ giác nội tiếp bù nhau) (3)
^DAC = ^DBC (hai góc nội tiếp chắn cùng 1 cung) (4)
Xét hai tam giác HIK và tam giác BCD
Từ (1) và (3) => ^HIK = ^BCD
Từ (2) và (4) => ^KHI = ^DBC
=> tam giác HIK đồng dạng với tam giác BCD
bđt ptoleme nhé bạn.
Trên cung nhỏ BC, ta có các góc nội tiếp ∠BAC = ∠BDC, và trên cung AB, ∠ADB = ∠ACB
- Lấy 1 điểm K trên AC sao cho ∠ABK = ∠CBD;
- Từ ∠ABK + ∠CBK = ∠ABC = ∠CBD + ∠ABD, suy ra ∠CBK = ∠ABD.
- Do vậy tam giác △ABK đồng dạng với tam giác △DBC, và tương tự có △ABD ∼ △KBC.
- Suy ra: AK/AB = CD/BD, và CK/BC = DA/BD;
- Từ đó AK·BD = AB·CD, và CK·BD = BC·DA;
- Cộng các vế của 2 đẳng thức trên: AK·BD + CK·BD = AB·CD + BC·DA;
- Hay: (AK+CK)·BD = AB·CD + BC·DA;
- Mà AK+CK = AC, nên AC·BD = AB·CD + BC·DA; (điều phải chứng minh)
A B C D E
Giả sử \(\widehat{ACB}>\widehat{ACD}\) trên BD lấy điểm E sao cho \(\widehat{BCE}=\widehat{ACD}\)
Xét △ACD và △BCE có
\(\widehat{BCE}=\widehat{ACD}\)(gt)
\(\widehat{CAD}=\widehat{CBE}\)(2 góc nội tiếp cùng chắn cung \(\stackrel\frown{CD}\))
Suy ra △ACD \(\sim\) △BCE(g-g)
\(\Rightarrow\frac{AC}{BC}=\frac{AD}{BE}\Rightarrow BC.AD=AC.BE\)(1)
Xét △ACB và △DCE có
\(\widehat{BCE}=\widehat{ACD}\Rightarrow\)\(\widehat{BCE}+\widehat{ECA}=\widehat{ACD}+\widehat{ECA}\Rightarrow\widehat{ACB}=\widehat{DCE}\)
\(\widehat{CDE}=\widehat{CAB}\)(2 góc nội tiếp cùng chắn cung \(\stackrel\frown{BC}\))
Suy ra △ACB \(\sim\) △DCE(g-g)
\(\Rightarrow\frac{AC}{DC}=\frac{AB}{DE}\Rightarrow AB.CD=AC.DE\)(2)
Cộng (1) và (2)\(\Leftrightarrow AB.CD+BC.AD=AC.BE+AC.DE=AC\left(BE+CE\right)=AC.BD\)
Vậy \(AB.CD+BC.AD=AC.BD\)
a, TA CÓ GÓC ADE = GÓC DAX=1/2 CUNG AB . DO DE // TIẾP TUYẾN AX
GÓC ACB =1/2CUNG AB
MÀ GÓC ADE +EDB =180 ĐỘ SUY RA TỨ GIÁC NT hoặc có thể cm góc aed +abc =180 cũng đc nha bn
b, AB.AC =ÀF.AC hay phải cm ab =af
c tam giac EFC ddoofng dajng vs BFD gg
d , ror rafng laf BC keso đài s cắt o đc
hay là of kéo dài vậy
A B D C I J
a) Xét \(\Delta IAD\)và \(\Delta IBC\)có:
\(\widehat{AID}=\widehat{BIC}\)(2góc đối đỉnh)
\(\widehat{ADI}=\widehat{BCI}\)(cùng nhìn cung AB)
\(\Rightarrow\Delta IAD\)đồng dạng với \(\Delta IBC\)
\(\Rightarrow\frac{IA}{IB}=\frac{ID}{IC}\Rightarrow IA.IC=IB.ID\)(ĐPCM)
b)Xét \(\Delta JAC\)và \(\Delta JBD\)có:
\(\widehat{J}\)là góc chung
\(\widehat{JCA}=\widehat{JDB}\)
\(\Rightarrow\)\(\Delta JAC\)đồng dạng với\(\Delta JBD\)
\(\Rightarrow\frac{JA}{JB}=\frac{JC}{JD}\Rightarrow JA.JD=JB.JC\)(ĐPCM)