K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2023

Em xem lại chỗ câu b) các số liệu nhé

a: Xet ΔABD vuông tại A và ΔBDC vuông tại B có

góc ABD=góc BDC

=>ΔABD đồng dạng với ΔBDC

 

21 tháng 6 2017

Mọi người giúp với !!

14 tháng 8 2017

 a, Chắc bạn vẫn còn nhớ phương pháp chứng mình 1 tứ giác là hình chữ nhật bằng cách chứng minh 2 đường chéo bằng nhau và cắt nhau tại trung điểm mỗi đường. Xét thấy tứ giác ABDC có tính chất như vậy nên nó là hình chữ nhật. 
b,Xét tam giác AHB và tam giác BMA có góc AHb = góc BMA = 90 độ; cạnh AB chung; góc A = góc B (2 góc đáy của tam giác ABO cân tại O). => 2 tam giác này bằng nhau (cạnh huyền, góc nhọn) => BH = AM (cặp cạnh tương ứng). Xét tam giác ABO có AM/AO = BH/BO (do BH = AM và AO = BO). 
=> MH song song với AB (định lý Ta - lét đảo). Mà AB vuông góc với AC nên suy ra HM vuông góc với AC. 
c, Xét tam giác BHA và tam giác DNC có góc H = góc N = 90 độ; AB = CD và góc ABH = góc CDN => 2 tam giác này bằng nhau => BH = ND, tương tự cũng suy ra HN song song với BD (giống phần b). Do MH song song với AB; HN song song với BD => góc MHN = góc ABD = 90 độ (2 góc có cặp cạnh tương ứng song song thì bằng nhau nếu cùng nhọn, cùng tù hoặc có 1 góc vuông trong 2 góc ) => tam giác MHN vuông tại H => tâm đường tròn ngoại tiếp chình là trung điểm cạnh huyền và O chính là nó (hãy tự suy ra dựa vào những phần trên). 
d, Gọi I là tâm đường tròn nội tiếp tam giác ABC vuông tại A, ta có tính chất sau r (bán kính đường tròn nội tiếp) = (AB + AC - BC)/2. Ta sẽ đi chứng minh điều này: Xét tam giác ABC vuông tại A có I là tâm đường tròn nội tiếp. Kẻ IH vuông góc với AB; IK vuông góc với AC và IL vuông góc với BC. => Ta chứng minh được r = AH = AK. BH = BL và CK = LC (hãy tự chứng minh bằng cách nôi A với I; B với I và C với I) => AH + AK = (AB - HB + AC - KC) = (AB + AC - BH - CK) = (AB + AC - BL - LC) = (AB + AC - BC) <=> 2r = (AB + AC - BC) => r = AB + AC - BC)/2 mà R = BC/2 (tính chất trong tam giác vuông) => R + r = AB + AC - BC)/2 + BC/2 = (AB + AC)/2. Mà AB + AC >hoặc= 2 nhân căn bậc 2 (AB.AC) => (AB + AC)/2 >hoặc= căn bậc 2 của(AB.AC) (đpcm)

a: Xét ΔBAD vuông tại A và ΔADC vuông tại D có

BA/AD=AD/DC

=>ΔBAD đồng dạng với ΔADC

b: ΔBAD đồng dạng với ΔADC

=>góc BDA=góc ACD

Xét ΔOAD và ΔDAC có

góc ODA=góc DCA

góc A chung

=>ΔOAD đồng dạng với ΔDAC

=>góc AOD=góc ADC=90 độ

=>AC vuông góc BD tại O

c: Xét ΔOAB và ΔOCD có

góc OAB=góc OCD

góc AOB=góc COD

=>ΔOAB đồng dạng với ΔOCD

=>S OAB/S OCD=(AB/CD)^2=(4/9)^2=16/81

 

AH
Akai Haruma
Giáo viên
22 tháng 5 2021

Điểm O là điểm nào bạn?

AH
Akai Haruma
Giáo viên
22 tháng 5 2021

Lời giải:

a) 

Xét tam giác $BAD$ và $ADC$ có:

$\widehat{BAD}=\widehat{ADC}=90^0$

$\frac{AB}{AD}=\frac{4}{6}=\frac{6}{9}=\frac{AD}{DC}$

$\Rightarrow \triangle BAD\sim \triangle ADC$ (c.g.c)

b) Cho $O$ là giao $AC$ và $BD$

Từ tam giác đồng dạng p.a suy ra:

$\widehat{ABD}=\widehat{DAC}$

$\Leftrightarrow \widehat{ABO}=\widehat{DAO}=90^0-\widehat{BAO}$

$\Rightarrow \widehat{ABO}+\widehat{BAO}=90^0$

$\Rightarrow \widehat{AOB}=90^0$

$\Rightarrow AC\perp BD$ (đpcm)

c) 

Theo định lý Talet:

$\frac{OA}{OC}=\frac{OB}{OD}=\frac{AB}{CD}=\frac{4}{9}$

$\Rightarrow OA=\frac{4}{9}OC; OB=\frac{4}{9}OD$

\(\frac{S_{AOB}}{S_{COD}}=\frac{OA.OB}{OC.OD}=\frac{\frac{4}{9}OC.\frac{4}{9}OD}{OC.OD}=\frac{16}{81}\)