K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2023

TH1: ABCD không phải là hình thoi hoặc hình vuông

Gọi BM,DN lần lượt là phân giác của \(\widehat{ABC};\widehat{ADC}\)

Xét tứ giác ABCD có

\(\widehat{BAD}+\widehat{ABC}+\widehat{BCD}+\widehat{ADC}=360^0\)

=>\(2\cdot\left(\widehat{NBM}+\widehat{NDM}\right)=360^0-\widehat{A}-\widehat{C}=360^0-2\cdot\widehat{C}\)

=>\(\widehat{NBM}+\widehat{NDM}=180^0-\widehat{C}\)(1)

Xét ΔCMB có

\(\widehat{C}+\widehat{CMB}+\widehat{CBM}=180^0\)

=>\(\widehat{CMB}+\widehat{NBM}=180^0-\widehat{C}\)(2)

Từ (1) và (2) suy ra \(\widehat{NDM}=\widehat{CMB}\)

mà hai góc này ở vị trí đồng vị

nên BM//DN (ĐPCM)

TH2: ABCD là hình thoi hoặc hình vuông

ABCD là hình thoi

=>BD là tia phân giác của \(\widehat{ABC}\) và DB là tia phân giác của \(\widehat{ADC}\)

=>Các đường phân giác của góc B và góc D trùng nhau

https://olm.vn/hoi-dap/detail/82663575347.html

Tham khảo ở link này (mình gửi cho)

Còn cm trùng nhau là trường hợp đặc biệt khi \(\widehat{B}=\widehat{D}\)

Phân giác góc B cắt DC tại E

Phân giác góc D cắt AB tại I

Phân giác góc D trùng góc B do D1 = B2 ( slt )

D2 = B1 ( slt )

23 tháng 8 2017

a) Gọi E, F lần lượt là giao điểm của AM và CD, BN và CD 

Ta có : AB//CD (gt) => E = A1 (so le trong)

 Mà A1 =A2 (gt) 

Nên A2 = E 

Xét ΔADE cân tại D, có DM là p/giác nên DM đồng thời là trung tuyến 

=>AM= EM 

Chứng minh tương tự, ta được : 

BN = FN 

Xét hình thang ABEF có : AM=BN(cm trên) 

BN=FN(cm trên) 

Do đó MN là đường TB của HÌNH thang ABEF 

=> MN= \(\frac{EF+AB}{2}\)

MN//AB//EF Vậy MN// CD(đpcm) 

b)Do ED= AD; BC=FC 

Mà ED + DC + CF = EF 

Nên AD + DC + BC = EF 

Lại có MN \(\frac{EF+AB}{2}\)(CM trên) 

Suy ra MN= \(\frac{AD+DC+BC+AB}{2}\)\(=\frac{a+b+c+d}{2}\)

26 tháng 7 2022

Hình như bạn sai rồi. Tại sao ED + DC + CF lại bằng EF? Ý bạn là DE + EC + CF?

30 tháng 6 2021

Giúp em với ạ, huhu