Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)\(VT=\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=\overrightarrow{CO}+\overrightarrow{DO}+\overrightarrow{OC}+\overrightarrow{OC}=\overrightarrow{CO}+\overrightarrow{OC}+\overrightarrow{DO}+\overrightarrow{OD}=\overrightarrow{0}\)
2)\(VT=\overrightarrow{DA}-\overrightarrow{DB}+\overrightarrow{DC}=\overrightarrow{BA}+\overrightarrow{DC}=\overrightarrow{0}\)
3)\(VT=\overrightarrow{DO}+\overrightarrow{AO}=\overrightarrow{OB}+\overrightarrow{AO}=\overrightarrow{AB}\)
4)\(\overrightarrow{MA}+\overrightarrow{MC}=\overrightarrow{MB}+\overrightarrow{BA}+\overrightarrow{MD}+\overrightarrow{DC}=\overrightarrow{MB}+\overrightarrow{MD}\left(đpcm\right)=\overrightarrow{MO}+\overrightarrow{OB}+\overrightarrow{MO}+\overrightarrow{OD}=2\overrightarrow{MO}\left(đpcm\right)\)
Chúc bạn học tốt!!!!!
Đăng kí kênh Youtube 'Ban Mai Anime' giúp mình nhé!!!!
(*) mk mới hok dạng toán này trên mạng ; nên lm thử thôi nha bn
hình :
A B C D F E O
a) ta có : \(VT=\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}+\overrightarrow{OE}+\overrightarrow{OF}\)
\(=\overrightarrow{OA}+\overrightarrow{EO}+\overrightarrow{OC}+\overrightarrow{AO}+\overrightarrow{OE}+\overrightarrow{CO}\)
\(=\left(\overrightarrow{AO}+\overrightarrow{OA}\right)+\left(\overrightarrow{CO}+\overrightarrow{OC}\right)+\left(\overrightarrow{EO}+\overrightarrow{OE}\right)\)
\(=\overrightarrow{AA}+\widehat{CC}+\overrightarrow{EE}=\overrightarrow{0}+\overrightarrow{0}+\overrightarrow{0}=\overrightarrow{0}=VP\left(đpcm\right)\)
b) ta có : \(VT=\overrightarrow{OA}+\overrightarrow{OC}+\overrightarrow{OE}=\overrightarrow{FO}+\overrightarrow{OE}-\overrightarrow{AO}\)
\(=\overrightarrow{FE}-\overrightarrow{FE}=\overrightarrow{EE}=\overrightarrow{0}=VP\left(đpcm\right)\)
c) ta có : \(VT=\overrightarrow{AB}+\overrightarrow{AO}+\overrightarrow{AF}=\overrightarrow{AB}+\overrightarrow{AF}+\overrightarrow{FE}\)
\(=\overrightarrow{AB}+\overrightarrow{AE}=\overrightarrow{AB}+\overrightarrow{BD}=\overrightarrow{AD}=VP\left(đpcm\right)\)
d) ta có : \(VT=\overrightarrow{MA}+\overrightarrow{MC}+\overrightarrow{ME}=\overrightarrow{MB}+\overrightarrow{BA}+\overrightarrow{MD}+\overrightarrow{DC}+\overrightarrow{MF}+\overrightarrow{FE}\)
\(=\left(\overrightarrow{MB}+\overrightarrow{MD}+\overrightarrow{MF}\right)+\left(\overrightarrow{BA}+\overrightarrow{DC}+\overrightarrow{FE}\right)\)
\(=\left(\overrightarrow{MB}+\overrightarrow{MD}+\overrightarrow{MF}\right)+\left(\overrightarrow{BA}+\overrightarrow{FE}+\overrightarrow{EO}\right)\) \(=\left(\overrightarrow{MB}+\overrightarrow{MD}+\overrightarrow{MF}\right)+\left(\overrightarrow{BA}+\overrightarrow{FO}\right)\) \(=\left(\overrightarrow{MB}+\overrightarrow{MD}+\overrightarrow{MF}\right)+\left(\overrightarrow{BA}-\overrightarrow{OF}\right)\) \(=\left(\overrightarrow{MB}+\overrightarrow{MD}+\overrightarrow{MF}\right)+\left(\overrightarrow{BA}-\overrightarrow{BA}\right)\) \(=\left(\overrightarrow{MB}+\overrightarrow{MD}+\overrightarrow{MF}\right)+\overrightarrow{AA}=\left(\overrightarrow{MB}+\overrightarrow{MD}+\overrightarrow{MF}\right)+\overrightarrow{0}\) \(=\overrightarrow{MB}+\overrightarrow{MD}+\overrightarrow{MF}=VP\left(đpcm\right)\)
a/ \(VT=\overrightarrow{AB}+\overrightarrow{BF}+\overrightarrow{BC}+\overrightarrow{CG}+\overrightarrow{CD}+\overrightarrow{DH}+\overrightarrow{DA}+\overrightarrow{AE}\)
\(=\left(\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CD}+\overrightarrow{DA}\right)+\left(\frac{1}{2}\overrightarrow{BC}+\frac{1}{2}\overrightarrow{CD}+\frac{1}{2}\overrightarrow{DA}+\frac{1}{2}\overrightarrow{AB}\right)\)
\(=\overrightarrow{0}+\frac{1}{2}.\overrightarrow{0}=\overrightarrow{0}=VP\)
b/ Câu này áp dụng luôn kq câu a
\(\overrightarrow{MF}-\overrightarrow{MA}+\overrightarrow{MG}-\overrightarrow{MB}+\overrightarrow{MH}-\overrightarrow{MC}+\overrightarrow{ME}-\overrightarrow{MD}=\overrightarrow{0}\)
chuyển mấy cái vecto kia sang vế phải là có ngay đpcm câu b
c/\(VT=\overrightarrow{AI}+\overrightarrow{IB}+\overrightarrow{AI}+\overrightarrow{IC}+\overrightarrow{AI}+\overrightarrow{ID}=3\overrightarrow{AI}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}\)
Để ý tới G là TĐ CD, F là TĐ BC
Theo quy tắc trung điểm
\(\Rightarrow\overrightarrow{IB}+\overrightarrow{IC}=2\overrightarrow{IF}=2\overrightarrow{HI}\)
\(\Rightarrow\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=2\overrightarrow{HI}+\overrightarrow{ID}=\overrightarrow{HI}+\overrightarrow{HD}\)
Mà \(\overrightarrow{HD}=\overrightarrow{AH}\Rightarrow\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=\overrightarrow{HI}+\overrightarrow{AH}=\overrightarrow{AI}\)
Thay vào cái trên sẽ có đpcm
b) \(VP=\overrightarrow{MC}-\overrightarrow{MD}=\overrightarrow{DC}=\overrightarrow{AB}=VP\left(đpcm\right)\)
c) \(\overrightarrow{BD}-\overrightarrow{BA}=\overrightarrow{OC}-\overrightarrow{OB}\\ \Leftrightarrow\overrightarrow{AD}=\overrightarrow{BC}\left(đúng\right)\\ \)
d) \(\overrightarrow{BC}-\overrightarrow{BD}+\overrightarrow{BA}=\overrightarrow{0}\\ \Rightarrow\overrightarrow{DC}+\overrightarrow{BA}=\overrightarrow{0}\\ \Leftrightarrow\overrightarrow{0}=\overrightarrow{0}\left(đúng\right)\)
Do là giao điểm của hai đường chéo hình bình hành nên:
\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}\)\(=\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{MO}+\overrightarrow{OB}+\overrightarrow{MO}+\overrightarrow{OC}+\overrightarrow{MO}+\overrightarrow{OD}\)
\(=4\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}\)
\(=4\overrightarrow{MO}\) (ĐPCM).
câu 2 ( các kí hiệu vecto khi lm bài thỳ b tự viết nhé mk k viết kí hiệu để trả lời cho nhanh hỳ hỳ )
OA+ OB + OC = OA'+ OB' + OC'
<=> OA - OA' + OB - OB' + OC - OC' = 0
<=> A'A + B'B + C'C = 0
<=> 2 ( BA + CB + AC ) = 0
<=> 2 ( CB + BA + AC ) = 0
<=> 2 ( CA + AC ) = 0
<=> 0 = 0 ( luôn đúng )
câu 1 ( các kí hiệu vecto b cx tự viết nhá )
VT = OD + OC = OA + AD + OB + BC = OA + OB + AD + BC = BO + OB + AD + BC = 0 + AD + BC = AD + BC = VP ( đpcm)