">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2017

Sử dụng tính chất tam giác đồng dạng và bất đẳng thức tam giác.

Dựng điểm E sao cho tam giác BCD đồng dạng với tam giác BEA. Khi đó, theo tính chất của tam giác đồng dạng, ta có

\(\frac{BA}{EA}=\frac{BD}{CD}\)

Suy ra \(BA.CD=EA.BD\left(1\right)\)

Mặt khác, tam giác EBC và tam giác ABD cũng đồng dạng do có

\(\frac{BA}{BD}=\frac{BE}{BC}\) và góc EBC= góc ABD

Từ đó

\(\frac{EC}{BC}=\frac{AD}{BD}\)

Suy ra

\(AD.BC=EC.BD\left(2\right)\)

Cộng (1) và (2) ta suy ra

\(AB.CD+AD.BC=BD.\left(EA+EC\right)\)

Áp dụng bất đẳng thức tam giác ta suy ra \(AB.CD+AD>BC\ge AC>BD\)

Dấu bằng xảy ra khi và chỉ khi tứ giác nội tiếp trong một đường tròn và trở thành định lý Ptoleme.

13 tháng 6 2017

Lớp 8 đã học tứ giác nội tiếp đâu mà bạn đã kết luận như vậy rồi.Bạn làm theo ý tưởng trên Wikipedia cũng phải chỉ rõ cách dựng điểm E ; kết luận dấu = xảy ra khi E,C,A thẳng hàng rồi từ đó suy ra tổng 2 góc đối của tứ giác bằng 1800 

26 tháng 2 2018

 Đây là đẳng thức ptôlêmê. 
C/m: Lấy 1 điểm M thuộc AC sao cho gocABD=gocMBC. Do tứ giác ABCD nội tiếp nên ^ADC=^ACB. Từ 2 điều trên suy ra tam giác ABD ~ MBC(g.g). Suy ra AD/MC=BD/BC => AD.BC=BD.MC (1) 
Từ cặp tam giác đồng dạng trên ta cũng có AB/BM = BD/BC => AB/BD = BM/BC mà ^ABM = ^DBC nên tam giác ABM ~ tam giác DBC. 
=> AB.CD=AM.BD (2) 
Cộng (1), (2) vế theo vế suy ra AC.BD = AB . CD + AD . BC

Vậy AC.BD = AB.CD + AD . BC ( đpcm )

22 tháng 7 2018

A B C D M N I

Nối đường chéo BD của tứ giác ABCD. Lấy I là trung điểm của đoạn BD, nối IM và IN.

Xét \(\Delta\)BAD: I là trung điểm BD; M là trung điểm AD => IM là đường trung bình của tam giác BAD

=> IM = 1/2 AB. Tương tự ta có: IN = 1/2 CD \(\Rightarrow IM+IN=\frac{AB+CD}{2}\)

Mà \(IM+IN\ge MN\)(T/c 3 điểm) \(\Rightarrow\frac{AB+CD}{2}\ge MN\)

Vậy \(MN\le\frac{AB+CD}{2}\)(đpcm).

Dấu "=" xảy ra <=> I thuộc đoạn MN <=> MN // AB // CD (Do IM // AB và IN // CD) <=> Tứ giác ABCD là hình thang.

12 tháng 10 2017

Gọi M là trung điểm của AC, ta có:

\(GE\le GM+ME=\dfrac{1}{2}CD+\dfrac{1}{2}AB=\dfrac{AB+CD}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\) Ba điểm M, G, E thẳng hàng.

\(\Leftrightarrow\) GE // AB và GE // CD \(\Leftrightarrow\) AB // CD

\(\Leftrightarrow\) Tứ giác ABCD là hình thang.
A B C D E G M

12 tháng 10 2017

tks nhìu~~

AD/AC=DE/EC

DB/BC=DE/EC

=>AD/AC=DB/BC

=>AD*BC=DB*AC

15 tháng 2 2023

Áp dụng tính chất tia phân giác, ta có \(\dfrac{ED}{EC}=\dfrac{AD}{AC}\) và \(\dfrac{ED}{EC}=\dfrac{BD}{BC}\). Từ đó suy ra \(\dfrac{AD}{AC}=\dfrac{BD}{BC}\Rightarrow AD.BC=AC.BD\) (đpcm)