K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2018

EF là đg trung bình ứng cạnh DC của tam giác ADC => EF= CD/2 tất nhiên < (AB+CD)/2

6 tháng 9 2016

bài 1 

a) Trong ∆ACD có EA = ED, KA = KC (gt)

nên EK là đường trung bình của ∆ACD

Do đó EK = CD/2

Tương tự KF là đường trung bình của ∆ABC.

Nên KF = AB/2

b) Ta có EF  ≤ EK + KF (bất đẳng thức trong ∆EFK)

Nên EF ≤ EK + KF = CD/2 + AB/2=  (AB +CD)/2

Vậy EF ≤ (AB +CD)/2

22 tháng 7 2018

A B C D M N I

Nối đường chéo BD của tứ giác ABCD. Lấy I là trung điểm của đoạn BD, nối IM và IN.

Xét \(\Delta\)BAD: I là trung điểm BD; M là trung điểm AD => IM là đường trung bình của tam giác BAD

=> IM = 1/2 AB. Tương tự ta có: IN = 1/2 CD \(\Rightarrow IM+IN=\frac{AB+CD}{2}\)

Mà \(IM+IN\ge MN\)(T/c 3 điểm) \(\Rightarrow\frac{AB+CD}{2}\ge MN\)

Vậy \(MN\le\frac{AB+CD}{2}\)(đpcm).

Dấu "=" xảy ra <=> I thuộc đoạn MN <=> MN // AB // CD (Do IM // AB và IN // CD) <=> Tứ giác ABCD là hình thang.

21 tháng 4 2017

a) Trong ∆ACD có EA = ED, KA = KC (gt)

nên EK là đường trung bình của ∆ACD

Do đó EK = CD/2

Tương tự KF là đường trung bình của ∆ABC.

Nên KF = AB/2

b) Ta có EF ≤ EK + KF (bất đẳng thức trong ∆EFK)

Nên EF ≤ EK + KF = CD/2 + AB/2 = (AB+CD)/2

Vậy EF ≤ (AB+CD)/2

14 tháng 9 2017

27. Cho tứ giác ABCD. Gọi E, F, K theo thứ tự là trung điểm của AD, BC, AC.

a) So sánh các độ dài EK và CD, KF và AB.

b) Chứng minh rằng EF \(\le\dfrac{AB+CD}{2}\)

Bài giải:

a) Trong ∆ACD có EA = ED, KA = KC (gt)

nên EK là đường trung bình của ∆ACD

Do đó EK =\(\dfrac{CD}{2}\)

Tương tự KF là đường trung bình của ∆ABC.

Nên KF = \(\dfrac{AB}{2}\)

b) Ta có EF ≤ EK + KF (bất đẳng thức trong ∆EFK)

Nên EF ≤ EK + KF = \(\dfrac{CD}{2}\) + \(\dfrac{AB}{2}\) = \(\dfrac{\left(AB+CD\right)}{2}\)

Vậy EF ≤ \(\dfrac{\left(AB+CD\right)}{2}\)



19 tháng 7 2018

Gọi K là trung điểm của AC .

Xét tam giác ADC ta có :

\(AE=DE\)(GT)

\(AK=CK\)(GT)

=> EK là đường trung bình của tam giác ADC

\(\Rightarrow EK=\frac{1}{2}CD\)

Xét tam giác ABC ta có :

\(BF=CF\)(GT)

\(KA=KC\)(GT)

=> KF là đường trung bình của tam giác ABC

+) Xét tam giác EFK ta có :

\(EF\le EK+KF\)

Mà \(EK=\frac{1}{2}CD\)( chứng minh trên )

\(KF=\frac{1}{2}AB\)( chứng minh trên )

\(\Rightarrow EK+KF=\frac{CD}{2}+\frac{AB}{2}\)

\(=\frac{AB+CD}{2}\)

Vậy \(EF\le\frac{AB+CD}{2}\) ( đpcm)

19 tháng 7 2018

A B C D E F K