K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2023

A B C D M N P I K K X Y Z

a/

Ta có

M là trọng tâm tg ABC \(\Rightarrow\dfrac{MI}{MA}=\dfrac{1}{2}\)

N là trọng tâm tg ACD \(\Rightarrow\dfrac{NK}{NA}=\dfrac{1}{2}\)

Xét tg AIK có

\(\dfrac{MI}{MA}=\dfrac{NK}{NA}=\dfrac{1}{2}\) => MN//IK (Talet đảo trong tam giác)

Ta có

\(I\in BC;BC\in\left(BCD\right)\Rightarrow I\in\left(BCD\right)\)

\(K\in CD;CD\in\left(BCD\right)\Rightarrow K\in\left(BCD\right)\)

\(\Rightarrow IK\in\left(BCD\right)\) Mà MN//IK (cmt) => MN//(BCD)

Các trường hợp khác c/m tương tự

b/

Trong (ABC) từ M dưng đường thẳng // BC cắt AB; AC tại X và Y

Trong (ACD) nối YN cắt AD tại Z

Xét tg ABC có

\(\dfrac{XB}{XA}=\dfrac{YC}{YA}=\dfrac{MI}{MA}=\dfrac{1}{2}\) (Talet trong tam giác)

XY//BC; \(BC\in\left(BCD\right)\) => XY//(BCD)

Xét tg ACK có

\(\dfrac{YC}{YA}=\dfrac{NK}{NA}=\dfrac{1}{2}\) => YN//CK => YZ//CD

mà \(CD\in\left(BCD\right)\) => YZ//(BCD)

=> (XYZ)//(BCD)

Ta có MP//(BCD); MN//(BCD) => (MNP)//(BCD)

mà \(M\in\left(MNP\right);M\in\left(XYZ\right)\)

\(\Rightarrow\left(MNP\right)\equiv\left(XYZ\right)\) (Từ 1 điểm ngoài 1 mặt phẳng cho trước chỉ có duy nhất 1 mặt phẳng đi qua điểm đã cho và // với mặt phẳng cho trước)

=> (XYZ) là thiết diện của tứ diện ABCD khi cắt bởi (MNP)

 

 

6 tháng 12 2023

loading...  

6 tháng 12 2023

loading...  phần c là hỏi về thiết diện của tứ diện ABCD cắt bởi (AG1G2) đk bn ???🤔

16 tháng 10 2018

 

20 tháng 4 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Gọi I là trung điểm của CD.

Vì G 1  là trọng tâm của tam giác ACD nên G 1   ∈   A I

Vì G 2  là trọng tâm của tam giác BCD nên G 2   ∈   B I

Ta có :

Giải sách bài tập Toán 11 | Giải sbt Toán 11

A B   ⊂   ( A B C )   ⇒   G 1 G 2   / /   ( A B C )

Và A B   ⊂   ( A B D )   ⇒   G 1 G 2   / /   ( A B D )

18 tháng 6 2019

Giải bài tập Đại số 11 | Để học tốt Toán 11

a) Có: MN ⊂ (ABN)

⇒ G ∈ (ABN)

⇒ AG ⊂ (ABN).

Trong (ABN), gọi A’ = AG ∩ BN.

⇒ A’ ∈ BN ⊂ (BCD)

⇒ A’ = AG ∩ (BCD).

b) + Mx // AA’ ⊂ (ABN) ; M ∈ (ABN)

⇒ Mx ⊂ (ABN).

M’ = Mx ∩ (BCD)

⇒ M’ nằm trên giao tuyến của (ABN) và (BCD) chính là đường thẳng BN.

⇒ B; M’; A’ thẳng hàng.

Giải bài tập Đại số 11 | Để học tốt Toán 11

⇒ BM’ = M’A’ = A’N.

c) Áp dụng chứng minh câu b ta có:

ΔMM’N có: MM’ = 2.GA’

ΔBAA’ có: AA’ = 2.MM’

⇒ AA’ = 4.GA’

⇒ GA = 3.GA’.

11 tháng 2 2017

(∝) // AB nên giao tuyến của (∝) với (ABC) là đường thẳng qua M, song song với AB, cắt BC tại Q, cắt AC tại G

(∝) // AB nên giao tuyến của (∝) với (ABC) là đường thẳng qua N, song song với AB, cắt BD tại P, cắt AD tại F

Gọi E là trung điểm của AB. M, N lần lượt là trọng tâm các tam giác ABC, ABD nên

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

theo định lí Ta- lét ta có MN // CD.

Do MN // CD nên PQ // GF // CD, lại có QG // FP(//AB nên thiết diện là hình bình hành GQPF.

Đáp án B