K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2023

Ta có D thuộc phân giác của �^A;

��⊥��DHAB��⊥��DKAC ⇒��=��DH=DK (tính chất tia phân giác của một góc).

Gọi G là trung điểm của ��BC.

Xét △���BGD và △���CGD, có

���^=���^=90∘BGD=CGD=90 (��DG là trung trực của ��BC ),

��=��BG=CG (già thiết),

��DG là cạnh chung.

Do đó △���=△���BGD=CGD (hai cạnh góc vuông)

⇒��=��BD=CD (hai cạnh tương ứng).

Xét △���BHD và △���CKD, có

���^=���^=90∘BHD=CKD=90 (giả thiết);

��=��DH=DK (chứng minh trên);

��=��BD=CD (chứng minh trên).

Do đó △���=△���BHD=CKD (cạnh huyền - cạnh góc vuông)

⇒��=��BH=CK (hai cạnh tương ứng).

Ta có DD thuộc phân giác của \widehat{A}A;

D H \perp A BDHABD K \perp A CDKAC \Rightarrow D H=D KDH=DK (tính chất tia phân giác của một góc).

Gọi GG là trung điểm của BCBC.

Xét \triangle B G DBGD và \triangle C G DCGD, có

\widehat{B G D}=\widehat{C G D}=90^{\circ}BGD=CGD=90 (DGDG là trung trực của B CBC ),

BG=CGBG=CG (già thiết),

DGDG là cạnh chung.

Do đó \triangle B G D=\triangle C G DBGD=CGD (hai cạnh góc vuông)

\Rightarrow B D=C DBD=CD (hai cạnh tương ứng).

Xét \triangle B H DBHD và \triangle C K DCKD, có

\widehat{B H D}=\widehat{C K D}=90^{\circ}BHD=CKD=90 (giả thiết);

D H=D KDH=DK (chứng minh trên);

B D=C DBD=CD (chứng minh trên).

Do đó \triangle B H D=\triangle C K DBHD=CKD (cạnh huyền - cạnh góc vuông)

\Rightarrow B H=C KBH=CK (hai cạnh tương ứng).

12 tháng 1 2017
bài toán này cũng dễ mà,nó ra là ... thôi bạn tự là đ
6 tháng 11 2017

Diễn giải:

- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.

Ví dụ 1:

Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75

Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9

- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.

tích mình đi

ai tích mình

mình tích lại

thanks

16 tháng 7 2019

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Ta có: AE là tia phân giác góc trong tại đỉnh A

      AF là tia phân giác góc ngoài tại đỉnh A

Suy ra: AE ⊥ AF (tính chất hai góc kề bù)

Vậy AE ⊥ DF.

a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có

BE chung

góc ABE=góc HBE

=>ΔBAE=ΔBHE

b: ΔBAE=ΔBHE

=>AE=HE

c: BA=BH

EA=EH

=>BE là trung trực của AH

d: BE là trung trực của AH

=>BE vuông góc AH