K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
SM
23 tháng 8 2018
a. Phải bổ sung điều kiện a và b không âm nữa thì mới chứng minh được.
Đặt a = n2 => n = \(\sqrt{a}\)
Đặt b = m2 => m = \(\sqrt{b}\)
mà a < b
=> n2 < m2
=> \(\frac{n^2}{n}< \frac{m^2}{m}\)
=> n < m
=> \(\sqrt{a}< \sqrt{b}\)
b. Nếu \(\sqrt{a}< \sqrt{b}\)
=> \(\sqrt{a}.\sqrt{a}< \sqrt{b}.\sqrt{b}\)
=> a < b
21 tháng 10 2019
Cái này là định lí Fermat nhỏ mà nhỉ
chứng minh bằng cách dùng hệ quả của định lý Euler.
https://diendantoanhoc.net/topic/123358-ch%E1%BB%A9ng-minh-%C4%91%E1%BB%8Bnh-l%C3%BD-fermat-nh%E1%BB%8F/
Xem tại link này(Mik ngại viết lắm)