K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2018

a. Phải bổ sung điều kiện a và b không âm nữa thì mới chứng minh được.

Đặt a = n2 => n = \(\sqrt{a}\)

Đặt b = m2 => m = \(\sqrt{b}\)

mà a < b

=> n2 < m2

=> \(\frac{n^2}{n}< \frac{m^2}{m}\)

=> n < m 

=> \(\sqrt{a}< \sqrt{b}\)

b. Nếu \(\sqrt{a}< \sqrt{b}\)

=> \(\sqrt{a}.\sqrt{a}< \sqrt{b}.\sqrt{b}\)

=> a < b

31 tháng 7 2019

\(a,\)Vì \(a< b\Rightarrow a-b< 0\)

\(\Leftrightarrow\sqrt{a}^2-\sqrt{b}^2< 0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)< 0\)

Mà \(a,b>0\Rightarrow\sqrt{a}+\sqrt{b}>0\)

\(\Rightarrow\sqrt{a}-\sqrt{b}< 0\)

\(\Rightarrow\sqrt{a}< \sqrt{b}\left(đpcm\right)\)

\(b,\)Ta có:\(a\ge0;b>0\Rightarrow\sqrt{a}+\sqrt{b}>0\)

\(\sqrt{a}< \sqrt{b}\Rightarrow\sqrt{a}-\sqrt{b}< 0\)(1)

Nhân hai vế của (1) với \(\sqrt{a}+\sqrt{b}\).Mà theo cmt thì \(\sqrt{a}+\sqrt{b}>0\)nên khi nhân vào thì dấu của BPT (1) không đổi chiều

\(\Rightarrow\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)< 0\left(\sqrt{a}+\sqrt{b}\right)\)

\(\Leftrightarrow\sqrt{a}^2-\sqrt{b}^2< 0\)

\(\Leftrightarrow a-b< 0\)

\(\Rightarrow a< 0\left(đpcm\right)\)

27 tháng 8 2015

Nếu a<b thì a-b<0 ,suy ra \(\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)<0\)(hằng đẳng thức)
Hiển nhiên \(\left(\sqrt{a}+\sqrt{b}\right)>0\)với mọi a khác b nên suy ra \(\left(\sqrt{a}-\sqrt{b}\right)<0\)

suy ra ĐPCM, tương tự

8 tháng 6 2017

Hỏi đáp Toán

26 tháng 5 2018

a) Vì a,b không âm nên căn có nghĩa.
Ta có: \(\sqrt{a}\) = \(a^2\) ; \(\sqrt{b}\) = \(b^2\)
Vì a < b nên \(a^2\) < \(b^2\)
=> \(\sqrt{a}\) < \(\sqrt{b}\) (dpcm)

b) Vì a, b không âm nên căn có nghĩa.
Ta có: \(\sqrt{a}\) < \(\sqrt{b}\) => \(\left(\sqrt{a}\right)^2\) < \(\left(\sqrt{b}\right)^2\) => a < b (dpcm)

6 tháng 8 2018

câu 3b) 0

11 tháng 9 2016

a) \(a< b\)

\(\rightarrow\sqrt{a}^2< \sqrt{b}^2\)

\(\rightarrow\sqrt{a}< \sqrt{b}\)

b) \(\sqrt{a}< \sqrt{b}\)

\(\rightarrow\sqrt{a}^2< \sqrt{b}^2\)

\(\rightarrow a< b\)

Ko chắc lắm ^^!

20 tháng 6 2019

\(a,\)\(a< b\Rightarrow a-b< 0\)

\(\Rightarrow\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)< 0\)

Vì \(\sqrt{a}+\sqrt{b}>0\)

\(\Rightarrow\sqrt{a}-\sqrt{b}< 0\)\(\Rightarrow\sqrt{a}< \sqrt{b}\)\(\left(đpcm\right)\)

\(b,\)\(\sqrt{a}< \sqrt{b}\)\(\Rightarrow\sqrt{a}-\sqrt{b}< 0\)

Ta có :\(\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)=a-b\)

Mà \(\sqrt{a}-\sqrt{b}< 0\)\(\sqrt{a}+\sqrt{b}>0\)

\(\Rightarrow a-b< 0\)\(\Leftrightarrow a< b\)

2 tháng 8 2017

a,Nếu a<b thì a-b<0,=>\(\left(\sqrt{a}-\sqrt{b}\right).\left(\sqrt{a}+\sqrt{b}\right)< 0\)Hằng đẳng thức.

\(\left(\sqrt{a}+\sqrt{b}\right)>0\)với a,b khác nhau \(\left(\sqrt{a}-\sqrt{b}\right)< 0\left(ĐPCM\right)\)

b,Nếu \(\sqrt{a}< \sqrt{b}\)thì \(\sqrt{a}-\sqrt{b}\)<0,=>(a-b).(a+b)<0 Hằng đẳng thức.

(a+b)>0 với a,b khác nhau (a-b)<0\(\left(ĐPCM\right)\)

23 tháng 7 2020

a, Vì a,b không âm:

\(\Rightarrow\sqrt{a}+\sqrt{b}>0\)

Có \(a-b>0\Rightarrow\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)>0\)

Mà \(\Rightarrow\sqrt{a}+\sqrt{b}>0\)

\(\Rightarrow\sqrt{a}-\sqrt{b}>0\Leftrightarrow\sqrt{a}>\sqrt{b}\)

b, Tương tự phần a: 

\(\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)>0\Leftrightarrow a-b>0\Leftrightarrow a>b\)

( đổi ngược dấu a,b lại giúp mình nhé.)

23 tháng 7 2020

Mới nghĩ ra câu a) 1 kiểu khác nhưng không biết đúng không  :> nó vẫn ra hq như nhau thôi 

Do a,b không âm và a < b nên b > 0 , suy ra :

\(\sqrt{a}+\sqrt{B}>0\)   ( 1 )

Mặt khác , ta có :

\(a-b=\left(\sqrt{a}\right)^2-\left(\sqrt{b^2}\right)=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)\)( 2 )

Vì a < b nên a - b < 0 , từ ( 2 ) suy ra :

\(\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)< 0\)( 3 )

Từ (1) và (3) , suy ra :

\(\sqrt{a}-\sqrt{b}< 0\)hay \(\sqrt{a}< \sqrt{b}\)

8 tháng 6 2017

Lật ra phần sau sách bài tập í

8 tháng 6 2017

Nói như bạn thif tôi cũng k cần hỏi làm gì cho mất công