K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2020

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

ta có : \(\frac{4a-3b}{a}=\frac{4bk-3b}{bk}=\frac{b\left(4k-3\right)}{bk}=\frac{4k-3}{k}\)

\(\frac{4c-3d}{c}=\frac{4dk-3d}{dk}=\frac{d\left(4k-3\right)}{dk}=\frac{4k-3}{k}\)

\(\Rightarrow\frac{4a-3b}{a}=\frac{4c-3d}{c}\)

14 tháng 1 2018

a, \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a-b}{a+b}=\frac{c-d}{c+d}\)

b, \(\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{5b}{5d}=\frac{2a+5b}{2c+5d}\) 

\(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{4b}{4d}=\frac{3a-4b}{3c-4d}\)

\(\Rightarrow\frac{2a+5b}{2c+5d}=\frac{3a-4b}{3c-4d}\Rightarrow\frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)

c, \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a}{c}\cdot\frac{b}{d}=\frac{a-b}{c-d}\cdot\frac{a-b}{c-d}\Rightarrow\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

12 tháng 11 2018

Nguyễn Thị Linh Chi: Em có cách khác ạ. (cách này em làm trên lớp thường ngày.Và cũng khác đơn giản ạ)

ĐK: b,d ≠ 0 ; b≠d

Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\).Đặt \(\frac{a}{c}=\frac{b}{d}=k\Rightarrow\hept{\begin{cases}a=kc\\b=kd\end{cases}}\).Thay vào:

\(\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left(kc+kd\right)^2}{k^2c^2+k^2d^2}=\frac{\left[k\left(c+d\right)\right]^2}{k^2\left(c^2+d^2\right)}=\frac{\left(c+d\right)^2}{c^2+d^2}^{\left(đpcm\right)}\) 

12 tháng 11 2018

\(a^2+b^2\)nha mn

a)\(\frac{ab}{cd}=\frac{bk.b}{dk.b}=\frac{b^2}{d^2}\left(1\right)\)

\(\frac{a^2-b^2}{c^2-d^2}=\frac{b^2k^2-b^2}{d^2k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\left(2\right)\)

từ\(\left(1\right)\)\(\left(2\right)\)\(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)

20 tháng 7 2015

b)\(\frac{ac}{bd}=\frac{bkdk}{bd}=k.k=k^2\)

\(\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=\frac{\left[k\left(b+d\right)\right]^2}{\left(b+d\right)^2}=\frac{k^2.\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\)

=> \(\frac{ac}{bd}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)

20 tháng 7 2015

Đặt k ( với k khác 0 , thuộc Z ) sao cho \(\frac{a}{b}=\frac{c}{d}=k\) => \(a=kb\)  /  \(c=dk\) .

a) Thế vào \(\frac{5a-b}{3a+2b}\) , ta có \(\frac{5kb-3b}{3kb+2b}\)\(=\frac{b\left(5k-3\right)}{b\left(3k+2\right)}\)\(=\frac{5k-3}{3k+2}\)  /  \(\frac{5c-3d}{3c+2d}=\frac{5dk-3d}{3dk-2d}=\frac{d\left(5k-3\right)}{d\left(3k+2\right)}=\frac{\left(5k+3\right)}{\left(3k+2\right)}\)

=> VT = VP

 

12 tháng 11 2018

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\left(1\right)\)

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{2ab}{2cd}=\frac{a^2+b^2+2ab}{c^2+d^2+2cd}=\frac{\left(a+b^2\right)}{\left(c+d\right)^2}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\Rightarrow\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left(c+d\right)^2}{c^2+d^2}\left(dpcm\right)\)

https://bingbe.com/search?category=question&q=Cho%20t%E1%BB%89%20l%E1%BB%87%20th%E1%BB%A9c%20a%20%2Fb%20%3D%20c%20%2Fd%20.%C2%A0Ch%E1%BB%A9ng%20minh%20c%C3%B3%20t%E1%BB%89%20l%E1%BB%87%20th%E1%BB%A9c%20sau%20%3A%0A%0A(%20a%20%2B%20c%C2%A0)2%C2%A0%2F%20(%20b%20%2B%20d%20)2%C2%A0%3D%20a2%C2%A0%20%2B%C2%A0%C2%A0c2%C2%A0%2F%20b2%20%C2%A0%2B%20d%C2%A02%C2%A0%0A%0A(%20Gi%E1%BA%A3%20thi%E1%BA%BFt%20c%C3%A1c%20t%E1%BB%89%20s%E1%BB%91%20%C4%91%E1%BB%81u%20c%C3%B3%20ngh%C4%A9a%20)%C2%A0%0A%0A%C2%A0

Xem ở lick này nhé (mình gửi cho)

Học tốt!!!!!!!!!!!!!

28 tháng 7 2019

@@ chị linh Link dài vậy giải lun phải hơn không

11 tháng 11 2018

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{2b}{2d}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{2b}{2d}=\frac{a-2b}{c-2d}\)

\(\Rightarrow\frac{a^2}{c^2}=\frac{\left(a-2b\right)^2}{\left(c-2d\right)^2}=\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\)(vì \(\frac{a}{c}=\frac{b}{d}\))

\(\Rightarrow\frac{ab}{cd}=\frac{\left(a-2b\right)^2}{\left(c-2d\right)^2}\left(đpcm\right)\)

17 tháng 8 2018

ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\left(1\right)\)

mà \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)

Từ (1) \(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\Rightarrow\frac{a^2-b^2}{ab}=\frac{c^2-d^2}{cd}\)

17 tháng 8 2018

ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)

Lại có: \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\Rightarrow\frac{\left(a+b^2\right)}{a^2+b^2}=\frac{\left(c+d\right)^2}{c^2+d^2}\)