Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{a^2}{b^2}=\dfrac{b^2k^2}{b^2}=k^2\)
\(\dfrac{3a^2-2ac}{3b^2-2bd}=\dfrac{3\cdot b^2k^2-2\cdot bk\cdot dk}{3b^2-2bk}=k^2\)
Do đó: \(\dfrac{a^2}{b^2}=\dfrac{3a^2-2ac}{3b^2-2bd}\)
Bài 1:
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{3a}{3b}=\frac{2c}{2d}=\frac{3a+2c}{3b+2d}\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{3a+2c}{3b+2d}\)
Vậy \(\frac{a}{b}=\frac{c}{d}=\frac{3a+2c}{3b+2d}\)
Bài 2:
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk,c=dk\)
Ta có: \(\frac{ac}{bd}=\frac{bkdk}{bd}=k^2\) (1)
\(\frac{a^2-c^2}{b^2-d^2}=\frac{\left(bk\right)^2-\left(dk\right)^2}{b^2-d^2}=\frac{b^2.k^2-d^2.k^2}{b^2-d^2}=\frac{k^2.\left(b^2-d^2\right)}{b^2-d^2}=k^2\) (2)
Từ (1) và (2) suy ra \(\frac{ac}{bd}=\frac{a^2-c^2}{b^2-d^2}\)
Bài 3: Tương tự nhé bạn chỉ cần thay a = bk, c = dk vào thôi
a/
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{2a}{3b}=\frac{2c}{3d}\Rightarrow\frac{2a}{2c}=\frac{3b}{3d}=\frac{2a+3b}{2c+3d}=\frac{2a-3b}{2c-3d}\)
\(\Rightarrow\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\left(dpcm\right)\)
b/
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{ab}=\frac{c^2}{cd}\Rightarrow\frac{a^2}{c^2}=\frac{ab}{cd}\left(1\right)\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{ab}{b^2}=\frac{cd}{d^2}\Rightarrow\frac{b^2}{d^2}=\frac{ab}{cd}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{ab}{cd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\left(dpcm\right)\)
Câu hỏi của Doãn Thị Thu Trang - Toán lớp 7 - Học toán với OnlineMath