K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2017

Dễ ợt cái phần chứng minh chuyển thành \(\frac{bd}{ac}=\frac{b^2+d^2}{a^2+c^2}\)

Rồi bn tự chuyển đổi mà cm đi nha ( dễ ợt hà )

3 tháng 11 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow a=bk;c=bk\)
\(\Rightarrow\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k.k=k^2\) \(\left(1\right)\)
\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{b^2.k^2+d^2.k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}k^2\)(2)
\(\Rightarrow\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)
\(\Rightarrow\dfrac{ac}{a^2+c^2}=\dfrac{bd}{b^2+d^2}\)

ai giải được mình cho 3 k

Đặt a/b=c/d=k

=>a=bk; c=dk

a: \(\dfrac{7a-4b}{3a+5b}=\dfrac{7bk-4b}{3bk+5b}=\dfrac{7k-4}{3k+5}\)

\(\dfrac{7c-4d}{3c+5d}=\dfrac{7dk-4d}{3dk+5d}=\dfrac{7k-4}{3k+5}\)

Do đó: \(\dfrac{7a-4b}{3a+5b}=\dfrac{7c-4d}{3c+5d}\)

b: \(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=k^2\)

Do đó: \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)

11 tháng 7 2015

đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

suy ra:\(\frac{ac}{bd}=\frac{bk.dk}{bd}=k.k=k^2\)

\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2k^2+d^2k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\)

vậy \(\frac{ab}{bd}=\frac{a^2+c^2}{b^2+d^2}\)

11 tháng 7 2015

Ta có:\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{b}.\frac{c}{d}=\frac{c}{d}.\frac{c}{d}=>\frac{ac}{bd}=\frac{c^2}{d^2}\)

          \(\frac{c}{d}=\frac{a}{b}=>\frac{a}{b}.\frac{c}{d}=\frac{a}{b}.\frac{a}{b}=>\frac{ac}{bd}=\frac{a^2}{b^2}\)

=>\(\frac{ac}{bd}=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)

=>\(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)

29 tháng 7 2018

ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}\) (*)

mà \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)

Từ (*) \(\Rightarrow\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\left(đpcm\right)\)

29 tháng 7 2018

Thanks  bạn nhé