Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\left|\overrightarrow{OA}+\overrightarrow{OC}+\overrightarrow{OB}+\overrightarrow{OD}\right|=\left|\overrightarrow{0}+\overrightarrow{0}\right|=0\)
b/ \(\left|\overrightarrow{OA}+\overrightarrow{OB}\right|+\left|\overrightarrow{OC}+\overrightarrow{OD}\right|=a+a=2a\)
c/
\(\left|\overrightarrow{OA}+\overrightarrow{OC}+\overrightarrow{OB}\right|+\left|\overrightarrow{OD}\right|=\left|\overrightarrow{OB}\right|+\left|\overrightarrow{OD}\right|=2\left|\overrightarrow{OB}\right|=2\sqrt{a^2-\frac{a^2}{4}}=a\sqrt{3}\)
Câu 1:
Dựng hình bình hành ABCD \(\Rightarrow\left|\overrightarrow{BM}+\overrightarrow{BA}\right|=\left|\overrightarrow{MC}+\overrightarrow{CD}\right|=MD\)
Hạ ME vuông góc với CD \(\Rightarrow CE=ME=\frac{1}{2}AC\) và \(DE=CD+CE\)
\(\Delta ABC\) vuông cân tại A, theo Pytago ta có:
\(AC=\frac{\sqrt{BC^2}}{2}=a\)
\(\Rightarrow ME=\frac{a}{2}\) và \(DE=CE+CD=\frac{a}{2}+a=\frac{3a}{2}\)
\(\Delta EDM\) vuông tại E, theo Pytago ta có:
\(MD=\sqrt{ME^2+ED^2}=\sqrt{\frac{a^2}{4}+\frac{9a^2}{4}}=\frac{a\sqrt{10}}{2}\)
Câu 2:
Dựng \(\overrightarrow{OC}=\frac{11}{4}\overrightarrow{OA}\Rightarrow OC=\frac{11}{4}a\), \(\overrightarrow{OD}=\frac{3}{7}\overrightarrow{OB}\Rightarrow OD=\frac{3}{7}a\)
Ta có:
\(\left|\overrightarrow{v}\right|=\left|\frac{11}{4}\overrightarrow{OA}-\frac{3}{7}\overrightarrow{OB}\right|=\left|\overrightarrow{OC}-\overrightarrow{OD}\right|=\left|\overrightarrow{DC}\right|=DC\)
Tam giác OCD vuông tại O, theo Pytago, ta có:
\(DC=\sqrt{OD^2+OC^2}=\sqrt{\frac{9a^2}{49}+\frac{121a^2}{16}}\)\(=a\sqrt{\frac{6073}{784}}\)
b)
O B A M N
\(\overrightarrow{AN}=\dfrac{1}{2}\overrightarrow{AO}=-\dfrac{1}{2}\overrightarrow{OA}\)
Vậy \(m=-\dfrac{1}{2};n=0\).
c)
\(\overrightarrow{MN}=\dfrac{1}{2}\overrightarrow{AB}=\dfrac{1}{2}\left(\overrightarrow{AO}+\overrightarrow{OB}\right)=-\dfrac{1}{2}\overrightarrow{OA}+\dfrac{1}{2}\overrightarrow{OB}\).
Vậy \(m=-\dfrac{1}{2};n=\dfrac{1}{2}\).
d)
\(\overrightarrow{MB}=\dfrac{1}{2}\overrightarrow{OB}\)
Vậy \(m=0;n=\dfrac{1}{2}\).
1.
Gọi G là trọng tâm tam giác
\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{0}\)
\(\Leftrightarrow3\overrightarrow{OG}=\overrightarrow{0}\)
\(\Leftrightarrow O\equiv G\)
\(\Rightarrow O\) là trọng tâm tam giác ABC
\(\Rightarrow\Delta ABC\) đều
Gọi độ dài các cạnh tam giác là a
\(\overrightarrow{BN}.\overrightarrow{AM}=\dfrac{1}{4}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\left(\overrightarrow{BA}+\overrightarrow{BC}\right)=-\dfrac{1}{4}a^2-\dfrac{1}{8}a^2-\dfrac{1}{8}a^2+\dfrac{1}{2}a^2=0\)
Mặt khác \(\overrightarrow{BN}.\overrightarrow{AM}=BN.AM.cos\left(\overrightarrow{AM};\overrightarrow{BN}\right)\)
\(\Rightarrow BN.AM.cos\left(\overrightarrow{AM};\overrightarrow{BN}\right)=0\Rightarrow cos\left(\overrightarrow{AM};\overrightarrow{BN}\right)=0\Rightarrow\left(\overrightarrow{AM};\overrightarrow{BN}\right)=90^o\)
\(BD=\dfrac{AB}{cos45^o}=\dfrac{a}{\dfrac{\sqrt{2}}{2}}=a\sqrt{2}\)
\(\overrightarrow{BQ}.\overrightarrow{BP}=\dfrac{1}{4}\left(\overrightarrow{BA}+\overrightarrow{BD}\right)\left(\overrightarrow{BC}+\overrightarrow{BD}\right)\)
\(=\dfrac{1}{4}BA.BC.cos90^o+\dfrac{1}{4}BA.BD.cos45^o+\dfrac{1}{4}BD.BC.cos45^o+\dfrac{1}{4}BD^2\)
\(=\dfrac{1}{4}a^2+\dfrac{1}{4}a^2+\dfrac{1}{2}a^2=a^2\)
tam giác OAB vuông cân tại O \(\Rightarrow\)OA = OB = a.
2OA - OB = 2OA - OA = OA =a
Lời giải:
a) Bạn tham khảo tại đây:
Câu hỏi của Trần Thị Như Ý - Toán lớp 10 | Học trực tuyến
b)
\(|\overrightarrow{OB}+\overrightarrow{AC}-\overrightarrow{OA}|=|\overrightarrow{OB}+\overrightarrow{AO}+\overrightarrow{OC}-\overrightarrow{OA}|\)
\(=|\overrightarrow{OB}+\overrightarrow{OC}-2\overrightarrow{OA}|\)
\(=|-\overrightarrow{OA}-2\overrightarrow{OA}|=3|\overrightarrow{OA}|=3a\)