K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2017

Giải bài 8 trang 28 sgk Hình học 10 | Để học tốt Toán 10

18 tháng 5 2017

b)
O B A M N
\(\overrightarrow{AN}=\dfrac{1}{2}\overrightarrow{AO}=-\dfrac{1}{2}\overrightarrow{OA}\)
Vậy \(m=-\dfrac{1}{2};n=0\).
c)
\(\overrightarrow{MN}=\dfrac{1}{2}\overrightarrow{AB}=\dfrac{1}{2}\left(\overrightarrow{AO}+\overrightarrow{OB}\right)=-\dfrac{1}{2}\overrightarrow{OA}+\dfrac{1}{2}\overrightarrow{OB}\).
Vậy \(m=-\dfrac{1}{2};n=\dfrac{1}{2}\).
d)
\(\overrightarrow{MB}=\dfrac{1}{2}\overrightarrow{OB}\)
Vậy \(m=0;n=\dfrac{1}{2}\).

30 tháng 3 2017

Giải bài 5 trang 27 sgk Hình học 10 | Để học tốt Toán 10

30 tháng 3 2017

Copy làm j cho tốn công, ko đc tick đâu!!!

4 tháng 8 2019

Câu 1:

Dựng hình bình hành ABCD \(\Rightarrow\left|\overrightarrow{BM}+\overrightarrow{BA}\right|=\left|\overrightarrow{MC}+\overrightarrow{CD}\right|=MD\)

Hạ ME vuông góc với CD \(\Rightarrow CE=ME=\frac{1}{2}AC\) và \(DE=CD+CE\)

\(\Delta ABC\) vuông cân tại A, theo Pytago ta có:

\(AC=\frac{\sqrt{BC^2}}{2}=a\)

\(\Rightarrow ME=\frac{a}{2}\) và \(DE=CE+CD=\frac{a}{2}+a=\frac{3a}{2}\)

\(\Delta EDM\) vuông tại E, theo Pytago ta có:

\(MD=\sqrt{ME^2+ED^2}=\sqrt{\frac{a^2}{4}+\frac{9a^2}{4}}=\frac{a\sqrt{10}}{2}\)

4 tháng 8 2019

Câu 2:

Dựng \(\overrightarrow{OC}=\frac{11}{4}\overrightarrow{OA}\Rightarrow OC=\frac{11}{4}a\), \(\overrightarrow{OD}=\frac{3}{7}\overrightarrow{OB}\Rightarrow OD=\frac{3}{7}a\)

Ta có:

\(\left|\overrightarrow{v}\right|=\left|\frac{11}{4}\overrightarrow{OA}-\frac{3}{7}\overrightarrow{OB}\right|=\left|\overrightarrow{OC}-\overrightarrow{OD}\right|=\left|\overrightarrow{DC}\right|=DC\)

Tam giác OCD vuông tại O, theo Pytago, ta có:

\(DC=\sqrt{OD^2+OC^2}=\sqrt{\frac{9a^2}{49}+\frac{121a^2}{16}}\)\(=a\sqrt{\frac{6073}{784}}\)

22 tháng 8 2018

Ta có:

\(\overrightarrow{AM}=\dfrac{1}{2}\left(\overrightarrow{AO}+\overrightarrow{AB}\right)\)

\(\Leftrightarrow\overrightarrow{AM}=\dfrac{1}{2}\left(\overrightarrow{AO}+\overrightarrow{AO}+\overrightarrow{OB}\right)\)

\(\Leftrightarrow\overrightarrow{AM}=\dfrac{1}{2}\left(2\overrightarrow{AO}+\overrightarrow{OB}\right)\)

\(\Leftrightarrow\overrightarrow{AM}=\overrightarrow{AO}+\dfrac{1}{2}\overrightarrow{OB}\)

\(\Leftrightarrow\overrightarrow{AM}=\dfrac{1}{2}\overrightarrow{OB}-\overrightarrow{OA}\)

\(\RightarrowĐPCM\)

22 tháng 8 2018

Câu b ) Bạn làm tương tự câu a , ta có vecto BN = 1/2 (BO +BC ) , rồi là như câu a

chúc bạn hok tốt

a: \(\overrightarrow{AM}+\overrightarrow{BN}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{BC}=\dfrac{1}{2}\overrightarrow{AC}\)

b: \(=\dfrac{1}{2}\overrightarrow{AC}+\dfrac{1}{2}\overrightarrow{AC}+\dfrac{1}{2}\overrightarrow{BA}\)

\(=\overrightarrow{AC}+\dfrac{1}{2}\overrightarrow{BA}\)

c: \(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}\)

\(=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{BC}+\dfrac{1}{2}\overrightarrow{CA}\)

\(=\dfrac{1}{2}\left(\overrightarrow{AC}+\overrightarrow{CA}\right)=\overrightarrow{0}\)

AH
Akai Haruma
Giáo viên
29 tháng 8 2020

Lời giải:

a) Bạn tham khảo tại đây:

Câu hỏi của Trần Thị Như Ý - Toán lớp 10 | Học trực tuyến

b)

\(|\overrightarrow{OB}+\overrightarrow{AC}-\overrightarrow{OA}|=|\overrightarrow{OB}+\overrightarrow{AO}+\overrightarrow{OC}-\overrightarrow{OA}|\)

\(=|\overrightarrow{OB}+\overrightarrow{OC}-2\overrightarrow{OA}|\)

\(=|-\overrightarrow{OA}-2\overrightarrow{OA}|=3|\overrightarrow{OA}|=3a\)