Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C O F H E D I K A' C' B' M N
a) Do BHCK là hình bình hành nên BH // KC \(\Rightarrow KC\perp AC\Rightarrow\widehat{ACK}=90^o\)
KB // CF \(\Rightarrow\widehat{ABK}=90^o\)
Hai tam giác vuông ABK và ACK chung cạnh huyền AK nên A, B, C, K cùng thuộc đường tròn đường kính AK. Vậy K thuộc đường tròn (O).
b) Do BHCK là hình bình hành nên I là trung điểm HK.
AK là đường kính nên \(\widehat{AA'K}=90^o\Rightarrow\) DI // A'K
Vậy DI là đường trung bình tam giác HA'K. Suy ra HD = DA'
Tương tự : HF = FC' ; HE = EB'
Ta có : \(\frac{AA'}{AD}+\frac{BB'}{BE}+\frac{CC'}{CF}=\frac{AD+DA'}{AD}+\frac{BE+EE'}{BE}+\frac{CF+FC'}{CF}\)
\(=1+\frac{DA'}{AD}+1+\frac{EB'}{BE}+1+\frac{FC'}{CF}=3+\left(\frac{DA'}{AD}+\frac{EB'}{BE}+\frac{FC'}{CF}\right)\)
\(=3+\left(\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}\right)=3+\left(\frac{S_{BHC}}{S_{ABC}}+\frac{S_{AHC}}{S_{ABC}}+\frac{S_{AHB}}{S_{ABC}}\right)\)
\(=3+\frac{S_{ABC}}{S_{ABC}}=3+1=4\)
Vậy nên \(\frac{AA'}{AD}+\frac{BB'}{BE}+\frac{CC'}{CF}=4\)
c) Ta thấy \(\widehat{AKC}=\widehat{ABC}=\widehat{AHF}\)
Vậy nên \(\Delta AFH\sim\Delta ACK\left(g-g\right)\Rightarrow\frac{AH}{AK}=\frac{AF}{AC}\) (1)
AFH và AEH là các tam giác vuông chung cạnh huyền AH nên AFHE là tứ giác nội tiếp.
Vậy thì \(\widehat{AFM}=\widehat{AHE}=\widehat{ACN}\)
Lại có \(\Delta AFH\sim\Delta ACK\Rightarrow\widehat{FAM}=\widehat{CAN}\)
Nên \(\Delta AFM\sim\Delta ACN\left(g-g\right)\Rightarrow\frac{AF}{AC}=\frac{AM}{AN}\) (2)
Từ (1) và (2) suy ra \(\frac{AH}{AK}=\frac{AM}{AN}\Rightarrow\frac{AH}{AM}=\frac{AK}{AN}\Rightarrow\) MN // HK (Định lý Talet đảo)
A B C M H O E F D K I
1. Dễ thấy : Góc MKA = 90 độ (Chắn nửa cung tròn đường kính AM)
Lại có AK vuông góc với BC tại D => MK // BC
2. Ta có : Góc FBC = CAD ( cùng phụ với góc ACB)
Mà : Góc CAD = 1/2 sđ cung CK = góc CAK
=> Góc KBC = góc FBC = góc CAK = 1/2 sđ cung CK
Mà BC vuông góc với AK => Hai tam giác DBK và tam giác DBH bằng nhau (cgv.gnk) => DK = DH (Hai cạnh tương ứng)
3. Gọi I là trung điểm của BC .
Ta có : BE vuông góc với AC ; MC vuông góc với AC
=> BE // MC
Tương tự ta có : MB // CF
suy ra tứ giác BHCM là hình bình hành => Hai đường chéo BC và HM cắt nhau tại trung điểm của mỗi đường. Mà I là trung điểm BC
=> I cũng là trung điểm của HM => đpcm.
Bạn xem câu a) tại link này
https://h.vn/hoi-dap/question/54831.html
Câu hỏi của Linh olm - Toán lớp 9 | Học trực tuyến
em mới học lớp 5
bài này làm tn v