Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Dễ thấy : Góc MKA = 90 độ (Chắn nửa cung tròn đường kính AM)
Lại có AK vuông góc với BC tại D => MK // BC
2. Ta có : Góc FBC = CAD ( cùng phụ với góc ACB)
Mà : Góc CAD = 1/2 sđ cung CK = góc CAK
=> Góc KBC = góc FBC = góc CAK = 1/2 sđ cung CK
Mà BC vuông góc với AK => Hai tam giác DBK và tam giác DBH bằng nhau (cgv.gnk) => DK = DH (Hai cạnh tương ứng)
3. Gọi I là trung điểm của BC .
Ta có : BE vuông góc với AC ; MC vuông góc với AC
=> BE // MC
Tương tự ta có : MB // CF
suy ra tứ giác BHCM là hình bình hành => Hai đường chéo BC và HM cắt nhau tại trung điểm của mỗi đường. Mà I là trung điểm BC
=> I cũng là trung điểm của HM => đpcm.
Gọi G là giao điểm của FC và AK.
Áp dụng định lý Menelaus cho tam giác FBC với cát tuyến A, G, K ta có:
\(\dfrac{AF}{AB}.\dfrac{KB}{KC}.\dfrac{GC}{GF}=1\Rightarrow\dfrac{GC}{GF}=\dfrac{KC}{KB}.\dfrac{AB}{AF}\). (1)
Áp dụng định lý Menelaus cho tam giác ACB với cát tuyến K, E, F ta có:
\(\dfrac{EA}{EC}.\dfrac{KC}{KB}.\dfrac{FB}{FA}=1\Rightarrow\dfrac{KC}{KB}=\dfrac{FA}{FB}.\dfrac{EC}{EA}\). (2)
Từ (1), (2) có \(\dfrac{GC}{GF}=\dfrac{EC}{EA}.\dfrac{AB}{FB}\). (*)
Mặt khác áp dụng định lý Menelaus cho tam giác AFC với cát tuyến B, H, E ta có:
\(\dfrac{HC}{HF}.\dfrac{BF}{BA}.\dfrac{EA}{EC}=1\Rightarrow\dfrac{HC}{HF}=\dfrac{AB}{FB}.\dfrac{EC}{EA}\). (**)
Từ (*), (**) ta có \(\dfrac{GC}{GF}=\dfrac{HC}{HF}\Rightarrow\dfrac{AC}{MF}=\dfrac{AC}{NF}\Rightarrow FM=FN\).
a: góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
b: góc DFC=góc EBC
góc EFC=góc DAC
góc EBC=góc DAC
=>góc DFC=góc EFC
em mới học lớp 5
bài này làm tn v