Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, BC=BH+HC=8BC=BH+HC=8
Áp dụng HTL:
⎧⎪⎨⎪⎩AB2=BH⋅BC=16AC2=CH⋅BC=48AH2=CH⋅BC=12⇒⎧⎪ ⎪⎨⎪ ⎪⎩AB=4(cm)AC=4√3(cm)AH=2√3(cm){AB2=BH⋅BC=16AC2=CH⋅BC=48AH2=CH⋅BC=12⇒{AB=4(cm)AC=43(cm)AH=23(cm)
b,b, Vì K là trung điểm AC nên AK=12AC=2√3(cm)AK=12AC=23(cm)
Ta có tanˆAKB=ABAK=42√3=2√33≈tan490tanAKB^=ABAK=423=233≈tan490
⇒ˆAKB≈490
a) Xét tứ giác AQMP có
\(\widehat{AQM}\) và \(\widehat{APM}\) là hai góc đối
\(\widehat{AQM}+\widehat{APM}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: AQMP là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
b) Xét ΔAQM vuông tại Q và ΔAPM vuông tại P có
AM chung
\(\widehat{QAM}=\widehat{PAM}\)(AM là tia phân giác của \(\widehat{QAP}\))
Do đó: ΔAQM=ΔAPM(cạnh huyền-góc nhọn)
Suy ra: QM=PM(hai cạnh tương ứng)
Xét ΔMQP có QM=PM(cmt)
nên ΔMQP cân tại M(Định nghĩa tam giác cân)