Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề này trong violympic hả??? năm ngoài cấp thành phố cx có bài tương tự như dzậy á ^^
\(5\sqrt{2}\approx7\)
Vẽ tam giác với MN = MP = 5 cm và NP = 7 cm ra sẽ thấy MNP là tam giác vuông cân.
Vậy M = 900
Bài này lạ quá. Hình vẽ là một tứ giác lõm.
Mình hướng dẫn ngắn gọn lời giải
a, Hai tam giác trên bằng nhau theo trường hợp cạnh - cạnh - cạnh
b, Có góc QMN = 80 độ
=> \(\widehat{PMQ}=\widehat{QMN}=\frac{360^o-80^o}{2}=140^o\)
CÓ: \(\widehat{QPM}=\widehat{MPN=\frac{60^o}{2}}=30^o\)
Xét tam giác PMQ biết góc PMQ =140 độ, góc PQM = 30 độ
=> Góc PQM = 10 độ
Mà góc PQM = góc PNM => Góc PNM = 10 độ
d, Xét tam giác QPM cân ở P ( PQ = PN)
=> Đường phân giác PM đồng thời là đường trung trực của đoạn thẳng NQ
e, Xét tam giác PQM có QN là đường trung trực của PM
=> Tam giác PQM cân ỏ Q => QP=PN=QM
Mà QM =MN
=> Tứ giác MNQP có 4 cạnh bằng nhau.
a: Xét ΔMNP vuông tại M và ΔHNM vuông tại H có
góc N chung
DO đó: ΔMNP∼ΔHNM
Suy ra: NM/NH=NP/NM
hay \(NM^2=NH\cdot NP\)
b: NP=13cm
\(NH=\dfrac{MN^2}{NP}=\dfrac{25}{13}\left(cm\right)\)
tự vẽ hình nha
a) xét tam giác MEN và tam giác MFP có:
\(\widehat{MFP}=\widehat{MEN}\left(=90'\right)\)
\(chung\widehat{NMP}\)
suy ra tam giác MEN đồng dạng với tam giác MFP (g-g)
do tam giác MEN đồng dạng với tam giác MFP
\(\Rightarrow\frac{ME}{MF}=\frac{MN}{MP}\)
lại có \(\widehat{NMP}\) chung
suy ra tam giác MFE đồng dạng với tam giác MPN
\(\Rightarrow\widehat{MEF}=\widehat{MNP}\)
Xét \(\Delta MNP\)có :
\(MN^2+NP^2=50=\left(5\sqrt{2}\right)^2=NP^2\)nên vuông cân tại M
Vậy ...
cám ơn nhé