K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔMAE và ΔMBE có 

MA=MB

\(\widehat{AME}=\widehat{BME}\)

ME chung

Do đó: ΔMAE=ΔMBE

b: Xét ΔMHE vuông tại H và ΔMKE vuông tại K có

ME chung

\(\widehat{HME}=\widehat{KME}\)

Do đó:ΔMHE=ΔMKE

Suy ra: EH=EK

c: Ta có: ΔMAB cân tại M

mà ME là đường trung tuyến

nên ME là đường cao

=>ΔEBI vuông tại E

28 tháng 2 2022

em cảm ơn ạ

23 tháng 4 2020

M N D A B I

hình của mjnh thiếu điểm H và K rồi bạn tự thêm vào đi

a, tam giác MND cân tại M (gt) 

=> ^MND = ^MDN (tc)

^MND + ^MNB = 180 (kb)

^MDN + ^MDA = 180 (kb)

=> ^MNB = ^MDA 

xét tam giác MNB và tam giác MDA có BN = DA (gt)

MN = MD do tam giác MND cân tại M (gt)

=> tg MNB = tg MDA (c-g-c)

=> MA = MB  (đn)

=> tg MAB cân tại M (Đn)

b, xét tam giác DHA và tam giác NKB có : AD = BN (gt)

^AHD = ^BKN = 90

^A = ^B do tam giác MAB cân tại M (câu a)

=> tg DHA = tg NKB (ch-gn)

=> DH = KN (đn)

c, tg DHA = tg NKB (câu b)

=> AH = KB (đn)

có MA = MB (câu a)

AH + MH = AM 

MK + KB = BM

=> MH = MK

d, có ^HDA  = ^KNB do tg DHA = tg NKB (Câu b)

^HDA = ^NDI (đối đỉnh)

^KNB = ^DNI (đối đỉnh)

=> ^NDI = ^DNI 

=> tam giác DNI cân tại I 

13 tháng 2 2016

m.n giúp mk với

 

20 tháng 4 2016

Câu 1. bạn cm tam giác ABM bằng tg ECM suy ra góc BAM và CEM bằng nhau, AB bằng CE. mà AB nhỏ hơn AC nên CE nhỏ hơn AC. Xét tg ACE có CAE nhỏ hơn góc CEA. Suy ra góc CAE nhỏ hơn góc ABM.

Câu 2. cm tam giác ABD và EBD bằng nhau sra DE vuông góc với BC, AH//ED. Kéo dài DE Cắt AB tại K.cm 2 tam giác DEC và DAK bằng nhau. EC bằng AK. So sánh AK và EH bằng cách vẽ AM vuông góc với EK. Cm HE bằng AM. So sánh AM và AK trong tam giác vuông AMK có AM nhỏ hơn AK. Vậy HE nhỏ hơn EC. Chúc bạn học tốt.

7 tháng 5 2016

cảm ơn

Cao Minh nhiều nha
  1. Cho tam giác ABC, M là trung điểm của BC . Trên tia đối của tia MA lấy điểm E sao choME= MA. Chứng minh rằng: a) AC = EB và AC // Beb) gọi I là một trên AC; K là một điểm trên EB sao choAI= EK. Chứng minh ba điểm I, M, K thẳng hàngc) Từ E kẻ EH vuông góc BC ( H thuộc BC ) Biết góc HBE= 50 độ; MEB = 25 độ. Tính góc HẺM và BME2) Cho tam giác ABC có góc B và góc C nhỏ hơn 90 độ. Vẽ ra phía ngoài tam giác ấy...
Đọc tiếp

 

 

1. Cho tam giác ABC, M là trung điểm của BC . Trên tia đối của tia MA lấy điểm E sao choME= MA. Chứng minh rằng: 

a) AC = EB và AC // Be

b) gọi I là một trên AC; K là một điểm trên EB sao choAI= EK. Chứng minh ba điểm I, M, K thẳng hàng

c) Từ E kẻ EH vuông góc BC ( H thuộc BC ) Biết góc HBE= 50 độ; MEB = 25 độ. Tính góc HẺM và BME

2) Cho tam giác ABC có góc B và góc C nhỏ hơn 90 độ. Vẽ ra phía ngoài tam giác ấy các tam giác cân ABD và ACE( trong đó góc ABD và góc ACE đều bằng 90 độ) vẽ DI và EK cùng vuông góc với đường thẳng BC . Chứng minh rằng:

a) BI = CK; EK = HC

b)BC=DI+ EK

3/ Cho tam giác ABC có góc A > 90 độ. Gọi là trung điểm của cạnh BC . Trên tia đối của tia IB lấy điểm D sao cho IB = ID. Nối C với D

a) Chứng minh tam giác AIB = tam giác CID

b) gọi M là trung điểm của BC , N là trung điểm của CD. Chứng minh rằng I là trung điểm của LN

c) Chứng minh góc AIB<góc BIC

d) Tìm điều kiện của tam giác ABCđể AC vuông góc với CD

 

Cần lời giải gấp ạ, mơn nhiều

 

0
2 tháng 5 2017

bạn nào giúp mk vẽ hình đc không

27 tháng 2 2020

Xét ΔADE và ΔABC có :
AD = AB (gt)

góc DAE =góc BAC = 90 độ
AE = AC (gt)
Do đó : ΔADE = ΔABC(c − g − c)
⇒ DE = BC ( hai cạnh tương ứng )
b.
Ta có :
góc ADE =góc CDN ( hai góc đối đỉnh )
góc C= góc E
( vì ΔADE = ΔABC )
⇒ góc N = góc A 90đọ
Hay DE ⊥ BC
Vậy DE ⊥ BC

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH...
Đọc tiếp

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?

Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH bằng tam giác MBH, tam giác ACE= tam giác AKE?

Bài 3: Cho tam giác ABC vuông tại C có góc A = 60* và đường phân gác của góc BAC cắt BC tại E. Kẻ EK vuông góc AB tại K (K thuộc AB).  Kẻ BD vuông góc với AE tại D (D thuộc AE). Chứng minh tam giác ACE = tam giác AKE

Bài 4: Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc BC tại H (H thuộc BC). Chứng minh tam giác ABE = tam giác HBE ?

0
25 tháng 12 2019

help me

25 tháng 12 2019

.Vì E là trung điểm BC, E là trung điểm AD

→ΔAEB=ΔDEC(c.g.c)→ΔAEB=ΔDEC(c.g.c)

b.Tương tự ta có thể chứng minh ΔAEC=ΔDEB(c.g.c)ΔAEC=ΔDEB(c.g.c)

→ˆEAC=ˆEDB→AC//BD→EAC^=EDB^→AC//BD

c.Vì

⎧⎪⎨⎪⎩ˆEAC=ˆEDB(câub)AE=DEˆAIE=ˆEKD=90o{EAC^=EDB^(câub)AE=DEAIE^=EKD^=90o

→ΔAIE=ΔDKE(g.c.g)→ΔAIE=ΔDKE(g.c.g)

d.Từ câu c

→ˆAEI=ˆKED→AEI^=KED^

→ˆKEI=ˆKED+ˆDEI=ˆAEI+ˆDEI=ˆAED=180o→KEI^=KED^+DEI^=AEI^+DEI^=AED^=180o

→K,E,I→K,E,I thẳng hàng

image

a) Ta có: \(\widehat{MNP}+\widehat{MNA}=180^0\)(hai góc kề bù)

\(\widehat{MPN}+\widehat{MPB}=180^0\)(hai góc kề bù)

mà \(\widehat{MNP}=\widehat{MPN}\)(hai góc ở đáy của ΔMNP cân tại M)

nên \(\widehat{MNA}=\widehat{MPB}\)

Xét ΔMNA và ΔMPB có 

MN=MP(ΔMNP cân tại M)

\(\widehat{MNA}=\widehat{MPB}\)(cmt)

AN=PB(gt)

Do đó: ΔMNA=ΔMPB(c-g-c)

Suy ra: MA=MB(hai cạnh tương ứng)

Xét ΔMAB có MA=MB(cmt)

nên ΔMAB cân tại M(Định nghĩa tam giác cân)

b) Sửa đề: PE vuông góc với MB

Ta có: ΔMAN=ΔMBP(cmt)

nên \(\widehat{AMN}=\widehat{BMP}\)(hai góc tương ứng)

hay \(\widehat{DMN}=\widehat{EMP}\)

Xét ΔMDN vuông tại D và ΔMEP vuông tại E có 

MN=MP(ΔMNP cân tại M)

\(\widehat{DMN}=\widehat{EMP}\)(cmt)Do đó: ΔMDN=ΔMEP(cạnh huyền-góc nhọn)

Suy ra: MD=ME(hai cạnh tương ứng)

c) Xét ΔMDE có MD=ME(cmt)

nên ΔMDE cân tại M(Định nghĩa tam giác cân)

\(\Leftrightarrow\widehat{MDE}=\dfrac{180^0-\widehat{DME}}{2}\)(Số đo của một góc ở đáy trong ΔMDE cân tại M)

hay \(\widehat{MDE}=\dfrac{180^0-\widehat{AMB}}{2}\)(1)

Ta có: ΔMAB cân tại M(cmt)

nên \(\widehat{MAB}=\dfrac{180^0-\widehat{AMB}}{2}\)(Số đo của một góc ở đáy trong ΔMAB cân tại M)(2)

Từ (1) và (2) suy ra \(\widehat{MDE}=\widehat{MAB}\)

mà \(\widehat{MDE}\) và \(\widehat{MAB}\) là hai góc ở vị trí đồng vị

nên DE//AB(Dấu hiệu nhận biết hai đường thẳng song song)