Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC
hay BMNC là hình thang
b: Xét ΔABK có MI//BK
nên MI/BK=AM/AB=1/2(1)
XétΔACK có NI//CK
nên NI/CK=AN/AC=1/2(2)
Từ (1)và (2) suy ra MI/BK=NI/CK
mà MI=NI
nên BK=CK
hay K là trug điểm của BC
Xét ΔABC có
K là trung điểm của BC
M là trung điểm của AB
Do đó: KM là đường trung bình
=>KM//AN và KM=AN
hay AMKN là hình bình hành
ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
A B C D E F M
Xét tam giác vuông ABC và tam giác vuông AED
góc BAC = góc EAD = 90 độ (1)
Mặc khác: góc AED = góc FEC đối đỉnh
góc FEC = góc ABC (do góc FEC + góc BCA = góc ABC + góc BCA)
=> góc AED = góc ABC (2)
từ (1) và (2) => tam giác vuông ABC và tam giác vuông AED đồng dạng với nhau
2. Xét tam giác BDC có DF là đường trung trực của BC => DF cũng là đường phân giác trong của tam giác BDC ->
góc ADE = góc BDF = góc FDC Mà : góc ADE = góc ACB (do câu 1 hai tam giác đồng dạng)
-> góc ACB = góc FDC
Mặc khác góc ABC + góc ACB = 90
góc FDC + góc DMC = 90
góc MEC + góc ACB = 90
=> Góc ABC = góc DMC = góc MEC
=> tam giác cân ECMtại C
3. Theo câu 2. ta có ECM cân tại C có CF là đường cao => CF là đường Trung tuyến
=> tứ giác BECM có 2 đường chéo cắt nhau và vuông góc tại trung điểm của mỗi đường -> tứ giác BECM là hình thoi
Để hình thoi là hình vuông thì hình thoi phải có 1 góc vuông => góc BEC phải vuông
Mà E nằm trên đoạn thẳng AC và góc BAC vuông
=> E phải trùng với A
=> tam giác ABC vuông cân tại A thì tứ giác BECM là hình vuông (đpcm)
xong rồi đó làm rất mệt nếu thấy đúng thì đăng ký giúp kênh youtube của mình nha có gì mình giúp giải bài cho
https://www.youtube.com/channel/UCdMJRiuo_35tKETQtnAYOBQ
a/
Ta có BG vuông góc AB; CH vuông góc AB => BG//CH
Ta có BH vuông góc AC; CG vuông góc AC => BH//CG
=> BHCG là hình bình hành (Tứ giác có các cặp cạnh dối // với nhau từng đôi một)
M là giao 2 đường chéo của hình bình hành BHCG => M là trung điểm của BC (trong hình bình hành hai đường chéo cắt nhau tại trung điểm mỗi đường)
b/ Ta có H trực tâm của tg ABC => AH vuông góc BC; AB vuông góc CE => ^PAH = ^HCM (góc có cạnh tương ứng vuông góc) (1)
Ta có PQ vuông góc HG (đề bài) và AB vuông góc CE (đề bài) => ^APH = ^CHM (góc có cạnh tương ứng vuông góc) (2)
Từ (1) và (2) => tg CMH đồng dạng với tg AHP
c/
đề bạn ghi sai rồi, phải là BD và CE chứ
a)Tam giác BEC và CDB có:
Góc E=D=90 độ
BC cạnh chung
Góc B=C(tam giác ABC đều)
vậy tam giác BEC=CDB(Cạnh huyền-góc nhọn)
b) Vì tam giác BEC=CDB => BE=CD(cạnh tương ứng)
mà BE+AE=CD+AD
Từ hai điều này suy ra AE=AD. nên tam giác AED cân tại A, lại có góc A bằng 60 độ, nên tam giác AED là tam giác đều
=> Góc AED=60 độ.
c) ta có Góc AED=ABC=60 độ
mà chúng ở vị trí đồng vị nên ED//BC.
Tứ giác BEDC có ED//BC vậy BEDC là hình thang.
Hình thang BEDC có 2 góc kề đáy góc B=C=60 độ
Vậy BEDC là hình thang cân.
d) Xét tam giác ABI và ACI có:
B=C=90 độ
AI cạnh chung
AB=AC
Vậy Tam giác ABI=ACI(Cạnh huyền-cạnh góc vuông)
=>IB=IC hay I thuộc đường trung trực của BC (1)
Tam giác ABC đều, có AH là đường cao nên đồng thời cũng là trung trực của BC (2)
từ (1) và (2) suy ra A, H, I thuộc đường trung trực của BC hay A, H, I thẳng hàng.