K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2023

Ta đặt:  \(S_{BEMF}=S_1;S_{ABC}=S\)

Kẻ \(AK\perp BC\) ; \(AK\) cắt \(EM\left\{H\right\}\)

Ta có: \(S_1=EM.HK\)

\(\Leftrightarrow S=\dfrac{1}{2}BC.AK\)

\(\Leftrightarrow\dfrac{S_1}{S}=2\dfrac{EM}{BC}.\dfrac{KH}{AK}\)

Đặt \(MA=x;MC=y\) . Theo định lý Thales ta có:

\(\dfrac{EM}{BC}=\dfrac{x}{x+y};\dfrac{HK}{AK}=\dfrac{x}{x+y}\)

\(\Leftrightarrow\dfrac{S_1}{S}=\dfrac{2xy}{\left(x+y\right)^2}\)

Áp dụng bất đẳng thức Cosi dạng \(\dfrac{ab}{\left(a+b\right)^2}\le\dfrac{1}{4}\) ta được:

\(\dfrac{S_1}{S}=\dfrac{2xy}{\left(x+y\right)^2}\le\dfrac{1}{2}\) hay \(S_1\le\dfrac{1}{2}S\)

\(\Leftrightarrow MaxS_1=\dfrac{1}{2}S\)

\(\Leftrightarrow\) \(M\) là trung điểm của \(AC\)

5 tháng 7 2016

Ta có : DM // AB => \(\frac{AM}{AC}=\frac{BD}{BC}\) =>AM.BC =BD.AC =AB.AC

cm tương tự AN.CB =CE.AB =AC.AB

=>AM.BC =AN.CB

=>AM =AN

Bài 1: Cho tam giác ABC, kẻ AH vuông góc với BC, BH=9cm, HC=16cm, tgC=0,75.Trên AH lấy điểm O sao cho OH=2cma) CM: ABC là tam giác vuôngb) Trên cạnh AB lấy điểm M, trên OB lấy điểm P và trên OC lấy điểm N sao cho AM/AB=OP/OB=ON/OC=2/5. Tính độ dài các cạnh và số đo các góc của tam giác MPNBài 2:Cho tam giác vuông ABC( A=90 độ) Kẻ đường thẳng song song với cạnh BC cắt ccs cạnh AB,AC tại M,N, MB=12cm, NC=9cm, trung...
Đọc tiếp

Bài 1: Cho tam giác ABC, kẻ AH vuông góc với BC, BH=9cm, HC=16cm, tgC=0,75.Trên AH lấy điểm O sao cho OH=2cm

a) CM: ABC là tam giác vuông

b) Trên cạnh AB lấy điểm M, trên OB lấy điểm P và trên OC lấy điểm N sao cho AM/AB=OP/OB=ON/OC=2/5. Tính độ dài các cạnh và số đo các góc của tam giác MPN

Bài 2:Cho tam giác vuông ABC( A=90 độ) Kẻ đường thẳng song song với cạnh BC cắt ccs cạnh AB,AC tại M,N, MB=12cm, NC=9cm, trung điểm của MN và BC là E và F

a) CM: 3 điểm A,E,F thẳng hàng

b) Trung điểm BN là G. Tính độ dài các cạnh và số đo các góc của tam giác EFG

c) CM: Tam giác EFG đồng dạng tam giác ABC

Bài 3: Cho tam giác ABC, A= 90 độ. Từ trung điểm E của cạnh AC kẻ EF vuông góc với BC. Nối AF và BE

a) CM; AF= BE.cos C

b) Biết BC=10cm, sinC=0,6. Tính diện tích tứ giác ABFE

c) AF và BE cắt nhau tại O. Tính SinAOB

Bạn nào giúp mk với ạ huhu cảm ơn nhiều nhiều

1
11 tháng 7 2019

Câu hỏi của Pham Van Hung - Toán lớp 9 - Học toán với OnlineMath

Bạn tham khảo câu 2 tai link này nhé!

18 tháng 3 2021

B C A H E Q F P D

a/

Ta thấy F và E đều nhìn BC dưới cùng 1 góc 90 độ nên E,F nằm trên đường tròn đường kính BC ta gọi là đường tròn (O')

=> B,F,E,C cùng nawmg trên một đường tròn

b/

Xét đường tròn (O) ta có

sđ \(\widehat{BQP}=\) sđ \(\widehat{BCP}=\frac{1}{2}\) sđ cung BP (góc nội tiếp đường tròn) (1)

Xét đường tròn (O') ta có

sđ \(\widehat{BEF}=\) sđ \(\widehat{BCP}=\frac{1}{2}\) sđ cung BF (góc nội tiếp đường tròn) (2)

Từ (1) và (2) \(\Rightarrow\widehat{BQP}=\widehat{BEF}\) => PQ//EF (Hai đường thẳng bị cắt bởi đường thẳng thứ 3 có hai góc ở vị trí đồng vị thì chúng // với nhau

c/ ta thấy F và D cùng nhìn BH dưới cùng 1 góc 90 độ nên BDHF là tứ giác nội tiếp

sđ \(\widehat{ABE}=\)sđ \(\widehat{FDA}=\frac{1}{2}\) sđ cung FH (1)

Ta thấy D và E cùng nhìn AB đướ cùng 1 góc 90 độ nên ABDE là tứ giác nội tiếp

sđ \(\widehat{ABE}=\)sđ \(\widehat{ADE}=\frac{1}{2}\) sđ cung AE (2)

Mà \(\widehat{FDA}+\widehat{ADE}=\widehat{FDE}\) (3)

Từ (1) (2) và (3) \(\Rightarrow\widehat{FDE}=2.\widehat{ABE}\left(dpcm\right)\)