K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2019

Chọn A.

Do tam giác vuông cân tại A nên AB = AC = a và  và góc C = 450

Ta có 

18 tháng 12 2022

\(\overrightarrow{CA}-\overrightarrow{CB}=\overrightarrow{BC}+\overrightarrow{CA}=\overrightarrow{BA}\)

30 tháng 3 2017

Ta có: CB= a√2; = 450

Vậy = -. = -||: ||. cos450 = -a.a√2.

=> = -a2

12 tháng 5 2017

Dựng hình hình hành CADB.
A B C D
Theo quy tắc hình bình hành: \(\overrightarrow{CA}+\overrightarrow{CB}=\overrightarrow{CD}\).
Vì vậy \(\left|\overrightarrow{CA}+\overrightarrow{CB}\right|=\left|\overrightarrow{CD}\right|=CD\);
Mặt khác \(\left|\overrightarrow{CA}-\overrightarrow{CB}\right|=\left|\overrightarrow{CA}+\overrightarrow{BC}\right|=\left|\overrightarrow{BA}\right|=BA\).
Suy ra: \(CD=AB\).
Hình bình hành CADB có hai đường chéo bằng nhau (\(CD=AB\) )nên hình bình hành CADB là hình chữ nhật.

21 tháng 2 2016

A B C A' B' C' I D

\(\overrightarrow{ID}.\overrightarrow{AA'}=\overrightarrow{ID}\left(\overrightarrow{IA'}-\overrightarrow{IA}\right)=\overrightarrow{ID}.\overrightarrow{IA'}-\overrightarrow{ID}.\overrightarrow{IA}=IA'^2-\overrightarrow{ID}.\overrightarrow{IA}\)

              \(=IA'^2-\left(\overrightarrow{IC'}+\overrightarrow{C'D}\right)\overrightarrow{IA}=IA'^2-\overrightarrow{IC'}.\overrightarrow{IA'}-\overrightarrow{C'D}.\overrightarrow{IA}=IA'^2-IC'^2-0\) (vì AI vuông góc với C'B')

             \(=r^2-r^2=0\) (r là bán kính đường tròn nội tiếp tam giác ABC)

ĐFCM

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Ta có: \(BC = \frac{{AB}}{{\cos {{30}^o}}} = 3:\frac{{\sqrt 3 }}{2} = 2\sqrt 3 \); \(AC = BC.\sin \widehat {ABC} = 2\sqrt 3 .\sin {30^o} = \sqrt 3 .\)

\(\overrightarrow {BA} .\overrightarrow {BC}  = \left| {\overrightarrow {BA} } \right|.\left| {\overrightarrow {BC} } \right|\cos (\overrightarrow {BA} ,\overrightarrow {BC} ) = 3.2\sqrt 3 .\cos \widehat {ABC} = 6\sqrt 3 .\cos {30^o} = 6\sqrt 3 .\frac{{\sqrt 3 }}{2} = 9.\)

\(\overrightarrow {CA} .\overrightarrow {CB}  = \left| {\overrightarrow {CA} } \right|.\left| {\overrightarrow {CB} } \right|\cos (\overrightarrow {CA} ,\overrightarrow {CB} ) = \sqrt 3 .2\sqrt 3 .\cos \widehat {ACB} = 6.\cos {60^o} = 6.\frac{1}{2} = 3.\)