K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2017

Dựng hình hình hành CADB.
A B C D
Theo quy tắc hình bình hành: \(\overrightarrow{CA}+\overrightarrow{CB}=\overrightarrow{CD}\).
Vì vậy \(\left|\overrightarrow{CA}+\overrightarrow{CB}\right|=\left|\overrightarrow{CD}\right|=CD\);
Mặt khác \(\left|\overrightarrow{CA}-\overrightarrow{CB}\right|=\left|\overrightarrow{CA}+\overrightarrow{BC}\right|=\left|\overrightarrow{BA}\right|=BA\).
Suy ra: \(CD=AB\).
Hình bình hành CADB có hai đường chéo bằng nhau (\(CD=AB\) )nên hình bình hành CADB là hình chữ nhật.

NV
8 tháng 10 2019

\(\left|\overrightarrow{CA}+\overrightarrow{CB}\right|=\left|\overrightarrow{CA}-\overrightarrow{CB}\right|\)

\(\Leftrightarrow CA^2+CB^2+2\overrightarrow{CA}.\overrightarrow{CB}=CA^2+CB^2-2\overrightarrow{CA}.\overrightarrow{CB}\)

\(\Leftrightarrow4\overrightarrow{CA}.\overrightarrow{CB}=0\)

\(\Rightarrow\overrightarrow{CA}.\overrightarrow{CB}=0\)

\(\Rightarrow CA\perp CB\Rightarrow\Delta ABC\) vuông tại C

27 tháng 2 2016

Do tam giác ABC vuông tại A và \(\widehat{B}=30^o\) \(\Rightarrow C=60^o\)

\(\Rightarrow\left(\overrightarrow{AB},\overrightarrow{BC}\right)=150^o;\)\(\left(\overrightarrow{BA},\overrightarrow{BC}\right)=30^o;\left(\overrightarrow{AC},\overrightarrow{CB}\right)=120^o\)

\(\left(\overrightarrow{AB},\overrightarrow{AC}\right)=90^o;\left(\overrightarrow{BC},\overrightarrow{BA}\right)=30^o\).Do vậy:

a) \(\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)+\sin\left(\overrightarrow{BA},\overrightarrow{BC}\right)+\tan\frac{\left(\overrightarrow{AC},\overrightarrow{CB}\right)}{2}\)

\(=\cos150^o+\sin30^o+\tan60^o\)

\(=-\frac{\sqrt{3}}{2}+\frac{1}{2}+\sqrt{3}\)

\(=\frac{\sqrt{3}+1}{2}\)

b) \(\sin\left(\overrightarrow{AB},\overrightarrow{AC}\right)+\cos\left(\overrightarrow{BC},\overrightarrow{AB}\right)+\cos\left(\overrightarrow{CA},\overrightarrow{BA}\right)\)

\(=\sin90^o+\cos30^o+\cos0^o\)

\(=1+\frac{\sqrt{3}}{2}\)

\(=\frac{2+\sqrt{3}}{2}\)

6 tháng 8 2018

ta có : \(\left|\overrightarrow{CA}+\overrightarrow{CB}\right|=\left|2\overrightarrow{CH}\right|=2CH\) với \(H\) là chân đường cao kẻ từ \(C\)

ta có : \(\left|\overrightarrow{CA}-\overrightarrow{CB}\right|=\left|\overrightarrow{BA}\right|=AB\)

mà ta có : \(\left|\overrightarrow{CA}+\overrightarrow{CB}\right|=\left|\overrightarrow{CA}-\overrightarrow{CB}\right|\) \(\Rightarrow AB=2CH\)

\(\Rightarrow\Delta ABC\) là tam giác vuông tại \(C\) (tính chất đường trung tuyến)

vậy ..........................................................................................

NV
23 tháng 11 2018

Theo tính chất trọng tâm tam giác ta luôn có:

\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\Rightarrow\overrightarrow{GA}=-\overrightarrow{GB}-\overrightarrow{GC}\)

Thế vào đẳng thức giả thiết ta được:

\(BC.\left(-\overrightarrow{GB}-\overrightarrow{GC}\right)+AC.\overrightarrow{GB}+AB.\overrightarrow{GC}=\overrightarrow{0}\)

\(\Rightarrow\left(AC-BC\right)\overrightarrow{GB}=\left(BC-AB\right)\overrightarrow{GC}\) (1)

\(\overrightarrow{GB};\overrightarrow{GC}\) không phải 2 vecto cùng phương

\(\Rightarrow\left(1\right)\) xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}AC-BC=0\\BC-AB=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}AC=BC\\AB=BC\end{matrix}\right.\)

\(\Rightarrow AB=AC=BC\) \(\Rightarrow\Delta ABC\) là tam giác đều

29 tháng 10 2021

\(VT=4\overrightarrow{MA}-4\overrightarrow{MC}+\overrightarrow{MB}-\overrightarrow{MC}\)

\(=4\overrightarrow{CA}+\overrightarrow{CB}\)

NV
3 tháng 5 2021

a.

\(P=cos120^0+cos120^0+cos120^0=-\dfrac{3}{2}\)

b.

\(A=\dfrac{\dfrac{sinx}{cosx}-\dfrac{cosx}{cosx}}{\dfrac{sinx}{cosx}+\dfrac{cosx}{cosx}}=\dfrac{tanx-1}{tanx+1}=\dfrac{2-1}{2+1}=\dfrac{1}{3}\)

c.

\(A=\dfrac{cos\left(720+30\right)+sin\left(360+60\right)}{sin\left(-360+30\right)-cos\left(-360-30\right)}=\dfrac{cos30+sin60}{sin30-cos30}=-3-\sqrt{3}\)

19 tháng 5 2017

Tích vô hướng của hai vectơ và ứng dụng

Gọi M là trung điểm của cạnh BC ta có :

\(\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AM}=\overrightarrow{AD}\)

Mặt khác :

\(\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow{CB}\)

Theo giả thiết ta có :

\(\left|2\overrightarrow{AM}\right|=\left|\overrightarrow{CB}\right|=\left|\overrightarrow{AD}\right|\) hay \(AM=\dfrac{BC}{2}\)

Ta suy ra ABC là tam giác vuông tại A

1 tháng 10 2021

Ta có I CA+AB I = I CB I =CB

Xét tam giác ABC ( A=90 ) áp dụng định lý pytago có

CB^2 = AB^2 + AC^2 = 9+16=25 => CB=5.

Vậy I CA+AB I= I CB I =5

 

 

 

 

 

AH
Akai Haruma
Giáo viên
1 tháng 10 2021

Bạn lưu ý lần sau gõ lời giải bằng công thức toán (biểu tượng \(\sum\) góc trái khung soạn thảo) để được tick dễ dàng hơn khi làm đúng nhé.

 

AH
Akai Haruma
Giáo viên
19 tháng 10 2019

Đề thiếu. Bạn xem lại đề.