\(S_{CEF}\le\frac{1}{4}S_{ABC}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2020

a) Tam giác ABC đều => Kẻ AH vuông góc với BC thì H là trung điểm của BC => BH = BC/2 = a/2

Tính được AH theo định lý Pytago: AH = a32a32

=> Diện tích của tam giác ABC là: 12.a32.a=a23412.a32.a=a234

b) Xét các cặp tam giác bằng nhau dựa trên tam giác ABC đều vào tỉ số đề bài cho (CGC) em sẽ => Tam giác DEF có 3 cạnh bằng nhau => tam giác đều

c) Tam giác DEF và tam giác ABC đồng dạng

=> SDEF/SABC = (DE/AB)2

14 tháng 12 2020

1) Ta có: \(\frac{CE}{EA}=\frac{2}{5}\Rightarrow\frac{EA}{CE}=\frac{5}{2}\Rightarrow\frac{EA}{CE+EA}=\frac{5}{2+5}\Rightarrow\frac{EA}{AC}=\frac{5}{7}\)\(\frac{AF}{FB}=\frac{2}{5}\Rightarrow\frac{AF}{AF+FB}=\frac{2}{2+5}\Rightarrow\frac{AF}{AB}=\frac{2}{7}\)

\(\Rightarrow\frac{S_{AEF}}{S_{AFC}}=\frac{AE}{AC}=\frac{5}{7}\Rightarrow S_{AEF}=\frac{5}{7}S_{AFC}\)và \(\frac{S_{AFC}}{S_{ABC}}=\frac{AF}{AB}=\frac{2}{7}\Rightarrow S_{AFC}=\frac{2}{7}S_{ABC}\)

\(\Rightarrow S_{AEF}=\frac{5}{7}.\frac{2}{7}S_{ABC}=\frac{10}{49}S_{ABC}\)

Tương tự, ta có: \(S_{DEC}=\frac{10}{49}S_{ABC}\)\(S_{DFB}=\frac{10}{49}S_{ABC}\)

\(\Rightarrow S_{DEF}=S_{ABC}-S_{AEF}-S_{DEC}-S_{DFB}=S_{ABC}-\frac{30}{49}S_{ABC}=\frac{19}{49}S_{ABC}\)

2) Gọi N là trung điểm của DM

Kẻ \(EM//AB\left(M\in BC\right)\), gọi O là giao điểm của AM và EF, khi đó \(\frac{EM}{AB}=\frac{EC}{AC}=\frac{MC}{BC}\)(Thales)

Mặt khác từ giả thiết suy ra \(\frac{BD}{BC}=\frac{CE}{AC}=\frac{AF}{AB}\)

Từ đó ta có được BD = MC, EM = AF

EM = AF và EM // AF nên tứ giác AFME là hình bình hành => O là trung điểm của EF và AM

Ta có: \(\hept{\begin{cases}BD=MC\left(cmt\right)\\DN=MN\end{cases}}\Rightarrow BN=NC\)

Tam giác ADM có hai trung tuyến AN và DO cắt nhau tại G nên G là trọng tâm => G thuộc AN và \(AG=\frac{2}{3}AN\), G thuộc DO và \(DG=\frac{2}{3}DO\)

\(\Delta ABC\)có G thuộc trung tuyến AN và \(AG=\frac{2}{3}AN\)nên G là trọng tâm của tam giác (1) 

\(\Delta DEF\)có G thuộc trung tuyến DO và \(DG=\frac{2}{3}DO\) nên G là trọng tâm của tam giác (2)

Từ (1) và (2) suy ra hai tam giác ABC, DEF có cùng trọng tâm G (đpcm)

16 tháng 12 2019

Bai 1

Bo de :  \(\Delta ABC\) trung tuyen AD 

\(\Rightarrow S_{ADB}=S_{ADC}\)

cai nay ban tu chung minh nha

Ap dung bo de va bai nay => \(S_{MNPQ}=S_{MQP}+S_{MNP}=\frac{1}{3}S_{MDC}+\frac{1}{3}S_{ABP}\)

ta phai chung minh \(S_{MDC}+S_{ABP}=S_{ABCD}\)

That vay co \(S_{AMP}=S_{AMD},S_{MBP}=S_{MBC}\)

=> \(S_{ABP}+S_{MDC}=S_{ADM}+S_{MDC}+S_{MBC}=S_{ABCD}\)

=> dpcm

16 tháng 12 2019

Hình như sai ở dòng thứ 2 từ dưới lên trên ấy

4 tháng 1 2018

B C D A E F H M N

a) Xét tam giác AFB và tam giác DMA có:

\(\widehat{ABF}=\widehat{DAM}\)  (Cùng phụ với góc \(\widehat{BAM}\)  )

\(\widehat{FAB}=\widehat{MDA}=90^o\)

AB = AD

\(\Rightarrow\Delta AFB=\Delta DMA\)  ( Cạnh góc vuông, góc nhọn kề)

\(\Rightarrow AF=DM\)

\(\Rightarrow DM=AE\)

Xét tứ giác AEMD có AE song song và bằng DM nên nó là hình bình hành.

Lại có \(\widehat{EAD}=90^o\)  nên AEMD là hình chữ nhật.

b) Đặt \(\frac{AE}{EB}=k\); Ta có các tỉ số: \(\frac{AE}{EB}=\frac{MD}{MC}=\frac{AD}{CN}=k\)

Ta có:  \(\frac{S_{AEH}}{S_{ABH}}=\frac{k}{k+1}\)

Ta có \(\frac{AE}{EB}=\frac{MD}{MC}=\frac{AD}{CN}=\frac{BC}{CN}=\frac{S_{BCH}}{S_{BNH}}=\frac{k}{k+1}\)

Vậy thì \(\frac{S_{AEH}}{S_{ABH}}=\frac{S_{CBH}}{S_{BNH}}\Rightarrow\frac{S_{AEH}}{S_{ABH}}=\frac{4S_{AEH}}{S_{BNH}}\Rightarrow\frac{S_{BNH}}{S_{BAH}}=\frac{1}{4}\)

\(\Rightarrow\frac{AH}{HN}=\frac{1}{4}\Rightarrow\frac{AF}{BN}=\frac{1}{4}\)

Ta có: \(\frac{AF}{BN}=\frac{AF}{BC+CN}=\frac{AF}{\left(k+1\right)AF+\left(\frac{k+1}{k}\right)AF}=\frac{1}{4}\)

\(\Rightarrow k=1\)

Vậy thì AE = EB hay E, F là trung điểm AB, AC.

Từ đó suy ra \(EF=\frac{BD}{2}=\frac{AC}{2}\)

Vậy AC = 2EF.

c) Ta thấy ngay \(\Delta ADM\sim\Delta NCM\left(g-g\right)\)

\(\Rightarrow\frac{AM}{MN}=\frac{AD}{CN}\Rightarrow AM.CN=MN.AD\)

\(\Rightarrow AM\left(AD+CN\right)=AN.AD\)

\(\Rightarrow AM.BN=AD.AD\)

\(\Rightarrow AM^2.BN^2=AN^2.AD^2\)

\(\Rightarrow AM^2\left(AD^2+BN^2-AD^2\right)=AN^2.AD^2\)

\(\Rightarrow AM^2\left(AN^2-AD^2\right)=AN^2.AD^2\)

\(\Rightarrow AM^2.AN^2=AM^2.AD^2+AN^2.AD^2\)

\(\Leftrightarrow\frac{1}{AD^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\)

7 tháng 4 2019

phần b bạn giải dài quá 

ta có tam giác BAF đồng dạng với BHA (g.g)

=> af/ah=bf/ab=ab/hc

<=> af/ah=ab/hb

<=>  ae/ah=bc/hb

mà hbc=bah

suy ra hbc đồng dạng với hae (cgc)

mà ti le diện tích đồng dạng bằng bình phương tỉ lệ đồng dạng

suy ra (ae/bc)^2=1/4

=>ae/ab=1/2

bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .1) C/m M, N lần lượt là trung điểm của AD và BC.2) tứ giác EFQP là hình gì ?3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại...
Đọc tiếp

bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .

1) C/m M, N lần lượt là trung điểm của AD và BC.

2) tứ giác EFQP là hình gì ?

3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm

4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)

bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại M, N . C/m rằng : 1) M là trung điểm của AN.

2) AM = MN = NC .

3) 2EN = DM + BC .

4)\(S_{ABC}=3S_{AMB}\)

bài 3 : cho hình thang ABCD ( AB //CD ) có đg cao AH = 3 cm và AB = 5cm , CD = 8cm gọi E, F , I lần lượt là trung điểm của AD , BC và AC.

1) C/m E ,F ,I thẳng hàng .

2) tính \(S_{ABCD}\)

3) so sánh \(S_{ADC}\) và \(2S_{ABC}\)

bài 4: cho tứ giác ABCD . gọi E, F, I lần lượt là trung điểm AD , BC và AC .1) C/m E, I , F thẳng hàng

2) tính EF≤ AB+CD / 2

3) tứ giác ABCD phải có điều kiện gì thì EF = AB+CD / 2

0