Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bai 1
Bo de : \(\Delta ABC\) trung tuyen AD
\(\Rightarrow S_{ADB}=S_{ADC}\)
cai nay ban tu chung minh nha
Ap dung bo de va bai nay => \(S_{MNPQ}=S_{MQP}+S_{MNP}=\frac{1}{3}S_{MDC}+\frac{1}{3}S_{ABP}\)
ta phai chung minh \(S_{MDC}+S_{ABP}=S_{ABCD}\)
That vay co \(S_{AMP}=S_{AMD},S_{MBP}=S_{MBC}\)
=> \(S_{ABP}+S_{MDC}=S_{ADM}+S_{MDC}+S_{MBC}=S_{ABCD}\)
=> dpcm
a) Tam giác ABC đều => Kẻ AH vuông góc với BC thì H là trung điểm của BC => BH = BC/2 = a/2
Tính được AH theo định lý Pytago: AH = a3√2a32
=> Diện tích của tam giác ABC là: 12.a3√2.a=a23√412.a32.a=a234
b) Xét các cặp tam giác bằng nhau dựa trên tam giác ABC đều vào tỉ số đề bài cho (CGC) em sẽ => Tam giác DEF có 3 cạnh bằng nhau => tam giác đều
c) Tam giác DEF và tam giác ABC đồng dạng
=> SDEF/SABC = (DE/AB)2