K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2018

tích đúng mình làm cho

27 tháng 8 2021

undefined

Hok tốt~

27 tháng 8 2021

Theo tính chất đường phân giác:\(\frac{AB}{AC}=\frac{BD}{CD}=\frac{75}{100}=\frac{3}{4}\)

Đặt AB = 3a; AC = 4a  (a > 0)

Áp dụng định lý Pitago:

\(AB^2+AC^2=BC^2=\left(BD+CD\right)^2\)

\(\left(3a\right)^2+\left(4a\right)^2=\left(75+100\right)^2\)

⇒a=35 (cm)

Theo công thức hệ thức lượng trong tam giác vuông:

\(BH=\frac{AB^2}{BC}=\frac{\left(3A\right)^2}{BD+CD}=\frac{9\times35^2}{75\times100}=63cm\)

CH = BC − BH = 75 + 100 − 63 = 112

k cho mik  nha

10 tháng 9 2020

A B C

a, Xét tam giác ABC vuông tại A, áp dụng định lí Pytago ta có:

BC= AB2 + AC2

BC= 21+ 722

BC= 5625

BC = 75 (cm)

b, Tam giác ABC vuông tại A, đường cao AH

Ta có: AB2 = BH . BC (định lí 1)

           212 = BH . 75

           BH = 441 : 75

           BH = 5,88 (cm)

Ta có : BC = BH + HC

            75 = 5,88 + HC

            HC = 75 - 5,88

            HC = 69,12 (cm)

Ta có: AH2 = BH . HC

          AH2 = 5,88 . 69,12

          AH2 = 406,4256

          AH = 20,16 (cm)

c, (Bạn tự vẽ tia p/g nha)

Theo tính chất đường phân giác góc B ta có:

=> AD/ DC = AB/ BC

=> AD/ AB = DC/BC

=> AD/ 21 = DC/ 75

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

AD/21 = DC/ 75 = AD + DC/ 21 + 75 = AC/ 96 = 72/ 96 = 3/4

=> AD/ 21 = 3/4 => AD = 15,75 (cm)

=> DC/ 75 = 3/4 => DC = 56, 25 (cm)

Mình không biết bạn có đánh sai số hay không mà số chênh nhau lớn quá, nếu bạn đánh sai thì chỉ cần thay số trong bài mình làm cho bạn là được nha :33

CHÚC BẠN HỌC TỐT !!!

Xét ΔABC có 

AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)(Tính chất tia phân giác của tam giác)

hay \(\dfrac{AB}{AC}=\dfrac{3}{5}\)

Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{5}\)

nên \(AB=\dfrac{3}{5}AC\)

Ta có: BD+CD=BC(D nằm giữa B và C)

nên BC=36+60=96(cm)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow\left(\dfrac{3}{5}AC\right)^2+AC^2=96\)

\(\Leftrightarrow\dfrac{34}{25}AC^2=96\)

\(\Leftrightarrow AC^2=\dfrac{1200}{17}\)

\(\Leftrightarrow AB=\dfrac{3}{5}AC=\dfrac{3}{5}\cdot\dfrac{20\sqrt{51}}{17}=\dfrac{12\sqrt{51}}{17}\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC nên 

\(\dfrac{BH}{CH}=\dfrac{AB^2}{AC^2}\)

\(\Leftrightarrow\dfrac{BH}{CH}=\dfrac{432}{17}:\dfrac{1200}{17}=\dfrac{432}{1200}=\dfrac{9}{25}\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot96=\dfrac{12\sqrt{51}}{17}\cdot\dfrac{20\sqrt{51}}{17}=\dfrac{720}{17}\)

hay \(AH=\dfrac{15}{34}\left(cm\right)\)

7 tháng 7 2021

tại sao tam giác ABC vuông tại A có AH là đg cao ứng với cạnh huyền BC thì suy ra cái kia

giải thích đc không

16 tháng 9 2020

A C B D O M K H

a;b dễ chắc tự làm đc

c, lấy K sao cho M là trđ của OK

mà có M là trđ của AC (gt) 

=> COAK là hình bình hành (dh)

=> CK // OA hay CK // OH và AK // CO hay AK // OD

xét tg KCB có CK // OH => \(\frac{BH}{HC}=\frac{BO}{OK}\)  (talet)

xét tg KAB có AK / OD => \(\frac{BO}{OK}=\frac{BD}{DA}\) (talet)

=> \(\frac{BH}{HC}=\frac{BD}{AD}\) mà có \(\frac{BD}{AD}=\frac{BC}{AC}\) do CD là pg của tg ABC (gt)

=> \(\frac{BC}{AC}=\frac{HB}{HC}\Rightarrow BC\cdot HC=HB\cdot AC\)

mà có \(BC\cdot HC=AC^2\) do tg ABC v tại A và AH _|_ BC (gt)

=> AC^2 = HB*AC

=> AC = HB (chia 2 vế cho ac vì ac > 0)

17 tháng 9 2020

Theo định lý Ce-va ta có: \(\frac{BH}{HC}.\frac{MC}{MA}.\frac{DA}{DB}=1\)

Mà MA = MC (do BM là đường trung tuyến của \(\Delta\)ABC) nên \(\frac{BH}{HC}.\frac{DA}{DB}=1\)(1)

CD là phân giác nên theo tính chất đường phân giác trong tam giác, ta có: \(\frac{DA}{DB}=\frac{AC}{BC}\)(2)

Từ (1) và (2) suy ra \(\frac{BH}{HC}.\frac{AC}{BC}=1\Rightarrow BH.AC=HC.BC\)(3)

Dễ thấy \(\Delta ABC~\Delta HAC\left(g.g\right)\Rightarrow\frac{HC}{AC}=\frac{AC}{BC}\Rightarrow AC^2=BH.HC\)(4)

Từ (3) và (4) suy ra \(AC^2=BH.AC\Rightarrow BH=AC\left(đpcm\right)\)

a: BD=36mm=3,6cm

CD=60mm=6cm

=>BC=9,6cm

AB/AC=BD/CD=3,6/6=3/5

=>BH/CH=(AB/AC)^2=9/25

b: BH/CH=9/25

=>BH/9=CH/25=(BH+CH)/(9+25)=9,6/34=24/85

=>BH=216/85; CH=120/17

AH=căn BH*CH=72/17(cm)

Xét ΔABC có

AD là đường phân giác ứng với cạnh BC

nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)

\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{3}{4}\)

hay \(AB=\dfrac{3}{4}AC\)

Ta có: BD+CD=BC

nên BC=17,5cm

Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2\cdot\dfrac{25}{16}=\dfrac{1225}{4}\)

\(\Leftrightarrow AC^2=196\)

hay AC=14cm

\(\Leftrightarrow AB=\dfrac{3}{4}AC=10.5\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=8.4\left(cm\right)\\BH=6.3\left(cm\right)\end{matrix}\right.\)