Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC có
D là trung điểm của AB
E là trung điểm của AC
Do đó: DE là đường trung bình của ΔABC
Suy ra: DE//BC
(tự vẽ hình)
a, Xét tam giác AED vs tam giác CEFcó:
AE=EC(gt)
DE=EF(gt)
góc AED=góc FEC (đối đỉnh)
=> 2 tam giác bằng nhau (c.g.c)
=>AD=FC(tương ứng)
b,Vì tam giác AED=CEF(cmt)
=> góc AED = góc FEC tương ứng. mà 2 góc ở vị trí so le trong nên => AD//FC
=>AB//FC tương ứng
c, dễ tự CM
a) Xét \(\Delta ADK\)và \(\Delta BDE\)có:
AD = BD (gt)
\(\widehat{ADK}=\widehat{BDE}\)
DK = DE (gt)
Suy ra \(\Delta ADK\)\(=\Delta BDE\left(c-g-c\right)\)
\(\Rightarrow\widehat{DAK}=\widehat{DBE}\)(hai góc tương ứng) và AK = BE
Mà 2 góc này ở vị trí so le trong nên \(AK//BC\)(đpcm)
b) Xét \(\Delta EIC\)và \(\Delta AIK\)có:
EI = AI (gt)
\(\widehat{IEC}=\widehat{IAK}\)(\(AK//BC\),so le trong)
EC = AK ( Vì AK = BE mà BE = EC)
Suy ra \(\Delta EIC\)\(=\Delta AIK\left(c-g-c\right)\)
\(\Rightarrow KI=CI\)(hai cạnh tương ứng)
Từ đề bài suy ra DE là đường trung bình của \(\Delta ABC\)
\(\Rightarrow DE//AC\)
CM tương tự được: \(\Delta KIE=\Delta CIA\)
Sao đó c/m \(KIC=180^0\)rồi suy ra I là trung điểm của KC
a: Xét tứ giác ADCF có
E là trung điểm của AC
E là trung điểm của DF
Do đó: ADCF là hình bình hành
Suy ra: AD//CF và AD=CF
=>BD=CF và BD//CF
Xét ΔBDC và ΔFCD có
\(\widehat{BDC}=\widehat{FCD}\)
DC chung
\(\widehat{BCD}=\widehat{FDC}\)
Do đó:ΔBDC=ΔFCD
b: Xét ΔACB có
D là trung điểm của AB
E là trung điểm của AC
Do đó: DE là đường trung bình của ΔABC
Suy ra: DE//BC và DE=1/2BC
a)
Xét \(\Delta AED\)và \(\Delta CEF\)
+ AE = CE(gt)
+ DE = EF(gt)
+ \(\widehat{AED}=\widehat{CEF}\)(đổi đỉnh)
\(\Delta AED=\Delta CEF\left(c.g.c\right)\)
b) Ta có CF = AD ( hai cạnh tương ứng)
Mà AD = BD => BD = CF
Ta lại có : \(\widehat{EAD}=\widehat{ECF}\)(hai góc tương ứng)
Mà hai góc này nằm ở vị trí so le trong nên FC//AB
c) \(\Delta BDC=\Delta FCD\)(c.g.c)
+ Chung CD
+ \(\widehat{BDC}=\widehat{FCD}\)(so le trong)
+ BD = CF(cmt)
d) Từ c) ta có DE = BC
Mà DE = 2.EF=BC
=> EF=1/2 BC